E. Gianolio et al. / Inorganic Chemistry Communications 13 (2010) 663–665
665
Fig. 2. 1H NMR spectra of Gd-AAZTA and (Gd-AAZTA)2 registered at 400 MHz and 298 K.
the corresponding (Yb-AAZTA)2 system (Fig. 2). As expected, the 1H
Appendix A. Supplementary data
NMR spectrum of (Yb-AAZTA)2 is quite similar to that of Yb-AAZTA:
eight equally intense resonances (integration 4) corresponding to the
eight methylenic groups of the two coordination cages and two
resonances (integration 2 and 4) corresponding to the methylenic
groups of the linker. The observed pattern is fully consistent with a
highly flexible solution structure either at the level of the acetate arms
or of the macrocyclic ring. Interestingly, the resonances of H1/H3 are
less shifted than H2 to indicate a closer spatial proximity between the
latter carbon and the Lanthanide centers. Likely, as already surmised
from the occurrence of water molecules in the second coordination
sphere, the two halves of the complex are not pushed out by the
residual negative charges. Rather the bridging water molecules
appear to keep them closely associated. To minimize the space
between the two halves the propylenic chain adopts a “slice-like”
configuration thus yielding H2 at a shorter distance than H1 and H3.
The herein reported results on (Gd-AAZTA)2 suggest that further
higher relaxivities could be obtained by designing multimeric Gd-
AAZTA-based systems as the relaxation enhancement properties of each
unit are additive and likely such multimeric derivatives may benefit
from additional second sphere contributions. The straighforward
procedure applied for the synthesis of the herein reported dimeric
ligand may be easily extended to design such multimeric derivatives.
Supporting information available: full details on the synthesis of
AAZTA dimer and on the pH-potentiometric titrations on (Gd-AAZTA)2
and Gd-AAZTA and on their respective ligands. Supplementary data
associated with this article can be found, in the online version, at doi:
10.1016/j.inoche.2010.03.014.
References
[1] S. Aime, L. Calabi, C. Cavallotti, E. Gianolio, G.B. Giovenzana, P. Losi, A. Maiocchi, G.
Palmisano, M. Sisti, Inorg. Chem. 43 (2004) 7588–7590.
[2] Z. Baranyai, F. Uggeri, G.B. Giovenzana, A.B. Nyei, E. Brucher, S. Aime, Chem. Eur. J.
15 (2009) 1696–1705.
[3] E. Gianolio, G.B. Giovenzana, D. Longo, I. Longo, I. Menegotto, S. Aime, Chem. Eur. J.
13 (2007) 5785–5797.
[4] E. Gianolio, G.B. Giovenzana, A. Ciampa, S. Lanzardo, D. Imperio, S. Aime, Chem.
Med. Chem. 3 (2008) 60–62.
[5] E.M. Elemento, D. Parker, S. Aime, E. Gianolio, L. Lattuada, Org. Biomol. Chem. 7
(2009) 1120–1131.
[6] G. Gugliotta, M. Botta, G.B. Giovenzana, L. Tei, Bioorg. Med. Chem. Lett. 19 (2009)
3442–3444.
[7] M. Tweedle, S. Kang, P. Ratsep, J. Enswiler, K. Kumar, R.K. Pillai, R. Ranganathan, R.
Shukla, X. Zhang, New Nonionic Macrocyclic Gadolinium Chelates, in: P.A. Rink, R.N.
Muller (Eds.), New Developments in Contrast Agent Research, Proceedings of the 3rd
Special Topic Seminar of theEuropean Magnetic Resonance Forum (September 1992),
European Magnetic Resonance Forum Foundation C/O Univ. Mons, Belgium, 1993,
pp. 59–65.
[8] D.H. Powell, O.M.N. Dhubhghaill, D. Pubanz, L. Helm, Y.S. Lebedev, W. Schlaepfer,
A.E. Merbach, J. Am. Chem.Soc. 118 (1996) 9333.
[9] E. Toth, S. Vauthey, D. Pubanz, A.E. Merbach, Inorg. Chem. 35 (1996) 3375–3379.
[10] T.M. Lee, T.H. Cheng, M.H. Ou, C.A. Chang, C.G. Liu, Y.M. Wang, Magn. Reson. Chem.
42 (2004) 329–336.
[11] J. Costa, E. Toth, L. Helm, A.E. Merbach, Inorg. Chem. 44 (2005) 4747–4755.
[12] J. Rudovsky, M. Botta, P. Hermann, A. Koridze, S. Aime, Dalton Trans. (2006)2323–2333.
[13] N.J. Blombergen, Chem. Phys. 27 (1957) 572–573.
Acknowledgments
Economic and scientific support from MIUR (FIRB RBNE03PX83_006,
and PRIN 2005039914 projects), the regional platform for Molecular
Imaging (PIIMDMT, “Procedure innovative di imaging molecolare per la
diagnostica e il monitoraggio terapeutico”), EC-FP6-projects MEDI-
TRANS (Targeted Delivery of Nanomedicine: NMP4-CT-2006-026668),
ENCITE (European Network for “Cell Imaging and Tracking Expertise”)
and EU-COST D38 Action is gratefully acknowledged.
[14] I. Solomon, Phys. Rev. 99 (1955) 559–565.
[15] J.H.J. Freed, Chem. Phys. 68 (1978) 4034–4037.
[16] T.J. Swift, R.E.J. Connick, Chem. Phys. 37 (1962) 307–320.