C O M M U N I C A T I O N S
indoles 6 were formed in 90-95% yields. Once again, the
enantioselectivities in these reactions were very high.
from the Rh2(S-DOSP)4-catalyzed decomposition of vinyldiazoac-
etates in the presence of a 4-acetoxy-6,7-dihydroindole precursor.
The reaction proceeds via a combined C-H activation/Cope
rearrangement-elimination mechanism, resulting in good yields and
very high asymmetric induction. The further application of this
chemistry to the synthesis of novel pharmaceutical targets is
currently in progress.
Acknowledgment. This work was supported by the National
Science Foundation (CHE-0350536). We thank Cara L. Nygren
for the X-ray crystallographic analysis.
Supporting Information Available: Full experimental data for the
compounds described in this paper; X-ray crystallographic files in CIF
format.
The C-H activation can be extended to a 4-substituted 6,7-
dihydrobenzothiophene 7 as illustrated in eq 3. Thiophenes are
common reaction partners with rhodium carbenoids,14 but in this
case the C-H activation is the dominant reaction, generating the
4-substituted benzothiophene 8 in 89% yield and 99% ee.
References
(1) (a) Sundberg, R. J. Indoles; Academic Press: London, 1996. (b) Saxton,
J. E. Nat. Prod. Rep. 1997, 559. (c) Borschberg, H.-J. Curr. Org. Chem.
2005, 9, 1465.
(2) Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical
Substances, 4th ed.; Thieme: New York, 2001.
(3) (a) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 2005, 127, 5776.
(b) Hayakawa, K.; Yasukouchi, T.; Kanematsu, K. Tetrahedron Lett. 1986,
27, 1837.
(4) (a) Iwao, M. Heterocycles 1993, 36, 29. (b) Chauder, B.; Larkin, A.;
Snieckus, V. Org. Lett. 2002, 4, 815.
(5) For comprehensive reviews of indole syntheses: (a) Gribble, G. W. J.
Chem. Soc., Perkin Trans. 1 2000, 7, 1045. (b) Cacchi, S.; Fabrizi, G.
Chem. ReV. 2005, 105, 2873.
(6) (a) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
1172. (b) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2005, 127, 15051. (c) Evans, D. A.; Scheidt, K. A.;
Fandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125, 10780.
(d) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005,
127, 8942. (e) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garcia, J. M.;
Linden, A. J. Am. Chem. Soc. 2005, 127, 4154.
The C-H activation strategy to prepare 4-substituted indoles
compliments some of the more conventional methods for indole
synthesis as illustrated in Scheme 1. Palladium-catalyzed coupling15
followed by acylation16 readily forms the 2-indole derivative 9. Rh2-
(S-DOSP)4-catalyzed reaction of 9 with the 3-indolylvinyldiazoac-
etate 3f generates the trisindole derivative 10 in 82% yield and
97% ee. In 10, one indole is 2-substituted, another is 3-substituted,
and the third is 2,4-disubstituted. The successful outcome of this
reaction underscores the facility of the combined C-H activation/
Cope rearrangement because indoles have often been shown to be
reactive partners in carbenoid chemistry.17
(7) Somei, M.; Yamkada, F.; Kunimoto, M.; Kaneko, C. Heterocycles 1984,
22, 7801.
(8) (a) Harrington, P. J.; Hegedus, L. S. J. Org. Chem. 1984, 49, 2657. (b)
Kalinin, A. V.; Chauder, B. A.; Rakhit, S.; Snieckus, V. Org. Lett. 2003,
5, 3519.
(9) For reviews on catalytic methods for C-H functionalization, see: (a)
Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc.
Chem. Res. 1995, 28, 154. (b) Dyker, G. Angew. Chem., Int. Ed. 1999,
38, 1698. (c) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97, 2879.
(d) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731. (e)
Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (f)
Davies, H. M. L.; Beckwith, R. E. J. Chem. ReV. 2003, 103, 2861.
(10) For recent examples of catalytic C-H functionalization, see: (a) O’Malley,
S. J.; Tan, K. L.; Watzke, A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2005, 127, 13496. (b) Dangel, B. D.: Godula, K.; Youn, S. W.;
Sezen, B.; Sames, D. J. Am. Chem. Soc. 2002, 124, 11856. (c) Wehn, P.
M.; DuBois, J. J. Am. Chem. Soc. 2002, 124, 12950. (d) Waltz, K. M.;
Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 11358. (e) Desai, L. V.:
Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542. (f) Davies,
H. M. L.; Jin, Q. Org. Lett. 2004, 6, 1769.
In conclusion, we have reported a novel methodology for the
asymmetric synthesis of 4-substituted and 2,4-disubstituted indoles
Scheme 1
(11) (a) Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org. Lett. 1999, 1, 233.
(b) Davies, H. M. L.; Jin, Q. J. Am. Chem. Soc. 2004, 126, 10862. (c)
Davies, H. M. L.; Jin, Q. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5472.
(d) Davies, H. M. L.; Beckwith, R. E. J. J. Org. Chem. 2004, 69, 9241.
(e) Davies, H. M. L.; Walji, A. M. Angew. Chem., Int. Ed. 2005, 44,
1733. (f) Davies, H. M. L.; Jin, Q. Org. Lett. 2005, 7, 2293. (g) Davies,
H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006. In press.
(12) The X-ray crystallographic data have been submitted to the Cambridge
Structure Database [Nygren, C. L.; Coppens, P. PriVate Communication
2005, CCDC 279134].
(13) Davies, H. M. L.; Matasi, J. J.; Hodges, L. M.; Huby, N. J. S.; Thornley,
C.; Kong, N.; Houser, J. H. J. Org. Chem. 1997, 62, 1095.
(14) Padwa, A.; Wisnieff, T. J.; Walsh, E. J. J. Org. Chem. 1989, 54, 299.
(15) Thoresen, L. H.; Kim, H.; Welch, M. B.; Burghart, A.; Burgess, K. Synlett
1998, 1276.
(16) Maekawa, H.; Itoh, K.; Goda, S.; Nishiguchi, I. Chirality 2003, 15, 95.
(17) Davies, H. M. L. In AdVances in Nitrogen Heterocycles; Moody, C. J.,
Ed.; JAI Press: London 1995; Vol. 1, pp 1-18.
JA057768+
9
J. AM. CHEM. SOC. VOL. 128, NO. 4, 2006 1061