C O M M U N I C A T I O N S
Scheme 2
cyclopropanation reaction occurred at -78 °C. Upon warming, a
second exchange with the vinyl iodide produced the corresponding
vinyl Grignard intermediate, which, in a second allylation, led to
15.15 Treatment of 15 with TMSI generated 16. Keck radical
allylation of the secondary iodide of 16 cleanly installed the
prerequisite allyl group of the required relative configuration
(Scheme 4).16 A second olefin cross metathesis converted both allyl
groups to prenyl moieties, yielding deisobutyryl garsubellin A (17)
in 73% yield.4d,12 Treatment of 17 with LDA and TMSCl followed
by iodination provided 18 in variable yields. A second magnesium-
iodine exchange14 cleanly generated the bridgehead nucleophile,
which upon treatment with isobutyraldehyde provided the aldol-
type adduct 19 as a mixture of isomers. Dess-Martin oxidation17
followed by cleavage of the TMS ether provided garsubellin A,
matching the reported spectra.1 With a practical route to garsubellin
A in hand, studies are underway to help identify the therapeutically
pertinent mode of action of this prospective agent. Similarly,
analogues of garsubellin A will be prepared in efforts to improve
biological performance.
Scheme 3a
Acknowledgment. This work was supported by the National
Institutes of Health (S.J.D. CA28824).
Note Added after ASAP Publication. The uncorrected proof
version of this paper was inadvertently published on the ASAP
Web site on December 30, 2005. The corrected final version was
published on January 5, 2006.
Supporting Information Available: Experimental procedures and
characterization for new compounds. This material is available free of
References
a Key: (a) Grubb’s 2nd generation catalyst, CH2Cl2/2-methyl-2-butene,
40 °C, 68%; (b) I2, KI, KHCO3, THF-H2O, 85%; (c) I2, CAN, CH3CN,
50 °C, 77%; (d) i-PrMgCl then Li2CuCl4, allyl bromide, THF, -78 to 0
°C, 67%; (e) TMSI then 1 N HCl, 0 °C CH2Cl2, 98%.
(1) (a) Fukuyama, Y.; Kuwayama, A.; Minami, H. Chem. Pharm. Bull. 1997,
45, 947-949. (b) Fukuyama, Y.; Minami, H.; Kuwayama, A. Phytochem-
istry 1998, 49, 853-857.
(2) Verotta, L. Phytochem. ReV. 2002, 1, 389-407.
(3) Roberson, M. R.; Harrell, L. E. Brain Res. ReV. 1997, 25, 50-69.
(4) (a) Nicolaou, K. C.; Pfefferkorn, J. A.; Kim, S.; Wei, H. X. J. Am. Chem.
Soc. 1999, 121, 4724-4725. (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Cao,
G.-Q.; Kim, S.; Kessabi, J. Org. Lett. 1999, 1, 807-810. (c) Usuda, H.;
Kanai, M.; Shibasaki, M. Org. Lett. 2002, 4, 859-862. (d) Spessard, S.
J.; Stoltz, B. M. Org. Lett. 2002, 4, 1943-1946. (e) Young, D. G. J.;
Zeng, D. X. J. Org. Chem. 2002, 67, 3134-3147. (f) Usuda, H.; Kanai,
M.; Shibasaki, M. Tetrahedron Lett. 2002, 43, 3621-3624. (g) Kraus, G.
A.; Nguyen, T. H.; Jeon, I. Tetrahedron Lett. 2003, 44, 659-661. (h)
Ciochina, R.; Grossman, R. B. Org. Lett. 2003, 5, 4619-4621. (i) Klein,
A.; Miesch, M. Tetrahedron Lett. 2003, 44, 4483-4485. (j) Mehta, G.;
Bera, M. K. Tetrahedron Lett. 2004, 45, 1113-1116. (k) Usuda, H.;
Kuramochi, A.; Kanai, M.; Shibasaki, M. Org. Lett. 2004, 6, 4387-4390.
(l) Nicolaou, K. C.; Carenzi, G. E. A.; Jeso, V. Angew. Chem., Int. Ed.
2005, 44, 3895-3899.
Scheme 4a
(5) Kuramochi, A.; Usuda, H.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. J.
Am. Chem. Soc. 2005, 127, 14200-14201.
(6) Our synthesis was disclosed at the Gordon Research Conference on Natural
Products, July 24-29, 2005.
(7) Landi, J. J.; Ramig, K. Synth. Commun. 1991, 21, 167-171.
(8) Asymmetric dihydroxylation of 3 using AD-mix-â has provided 4 in 60%
ee. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.;
Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.;
Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768-2771.
(9) Satoh, T.; Ikeda, M.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62,
4877-4879.
(10) (a) Borgulya, J.; Hansen, H. J.; Barner, R.; Schmid, H. HelV. Chim. Acta
1963, 46, 2444-2445. (b) Barner, R.; Boller, A.; Borgulya, J.; Herzog,
E. G.; von Philipsborn, W.; von Planta, C.; Fu¨rst, A.; Schmid, H. HelV.
Chim. Acta 1965, 48, 94-111.
a Key: (a) AIBN, allyltributyltin-C6H6, 80 °C, 82%; (b) Grubb’s 2nd
generation catalyst, CH2Cl2/2-methyl-2-butene, 40 °C, 73%; (c) LDA,
TMSCl then I2, THF, -78 to 0 °C, 25-36%; (d) i-PrMgCl then
isobutyraldehyde, THF, -78 to 0 °C, 72%; (e) DMP, CH2Cl2, 23 °C; (f)
Et3N(HF)3, THF, 23 °C, 88%, two steps.
(11) Given the equilibration under the reaction conditions, it is unclear whether
one or both diastereomers of 9 directly progress to 10.
(12) Chatterjee, A. K.; Sanders, D. P.; Grubbs, R. H. Org. Lett. 2002, 4, 1939-
1942.
(13) Asakura, J.; Robins, M. J. Tetrahedron Lett. 1988, 29, 2855-2858.
(14) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn,
T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302-
4320.
following helpful precedents of Nicolaou and co-workers.4a,b Using
the iodine/CAN system, a second iodination event was ac-
complished, this time at the vinylic position of 13, generating 14.5,13
Magnesium-iodine exchange using excess isopropylmagnesium
chloride triggered two sequential reactions.14 A transannular Wurtz
(15) Tamura, M.; Kochi, J. K. Synthesis 1971, 6, 303-305.
(16) Keck, G. E.; Yates, J. B. J. Am. Chem. Soc. 1982, 104, 5829-5831.
(17) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
JA057418N
9
J. AM. CHEM. SOC. VOL. 128, NO. 4, 2006 1049