Paper
RSC Advances
of NWs were broke (Fig. 4b). However, the CuO NWs crystal
structure were not changed dramatically as shown in Fig. S3,†
which revealed that the CuO NWs was not transformed aer the
recycle test.
8 D. Huang, P. Zhao and D. Astruc, Coord. Chem. Rev., 2014,
272, 145–165.
9 F. Alonso, Y. Moglie and G. Radivoy, Acc. Chem. Res., 2015,
48, 2516–2528.
10 G. P. Ellis and T. M. Romney Alexandar, Chem. Rev., 1987, 87,
779–794.
11 K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani and
K. Kaneda, Chem. Commun., 2001, 461–462.
12 K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed., 2003,
42, 1480–1483.
(3)
13 M. Kotani, T. Koike, K. Yamaguchi and N. Mizuno, Green
Chem., 2006, 8, 735–741.
14 F. Li, J. Chen, Q. Zhang and Y. Wang, Green Chem., 2008, 10,
553–562.
15 Y. Zhang, K. Xu, X. Chen, T. Hu, Y. Yu, J. Zhang and J. Hung,
Catal. Commun., 2010, 11, 951–954.
16 M. L. Mihailovic, A. Stojiljikovic and V. Andrewjevic,
Tetrahedron Lett., 1965, 6, 461–464.
17 T. Kajimoto, H. Takahashi and J. Tsuji, J. Org. Chem., 1976,
41, 1389–1393.
18 P. Capdevielle, A. Lavigne, D. Sparfel, J. Baranne-Lafont,
K. C. Ngyuen and M. Maumy, Tetrahedron Lett., 1990, 31,
3305–3308.
19 R. Tang, S. E. Diamond, N. Neary and F. Marks, J. Chem. Soc.,
Chem. Commun., 1978, 562.
20 F. Porta, C. Crotti and S. Cennini, J. Mol. Catal., 1989, 50,
333–341.
21 Y. Maeda, T. Nishimura and S. Uemura, Bull. Chem. Soc. Jpn.,
2003, 76, 2399–2403.
Conclusions
In summary, CuO NWs can be synthesized by thermal oxidation
of 3D Cu foam in air at different temperatures. Among all of the
as-prepared catalysts, CuO-600 exhibits superior catalytic
activity for 1,3-dipolar cycloaddition of phenyl acetylene and
benzyl azide without using any additional supports and bases
compared with CuO-400, CuO-500 and CuO-700 catalysts. A
wide range of functional groups on terminal alkyne were
tolerated, affording the corresponding substituted 1,2,3-triazole
in good to high yields with a sole selectivity. Moreover, leaching
experiment revealed that the click reaction occurred by
heterogeneous way, and the CuO-600 catalyst can be effective
reused nine times. Further work is in progress to extend such
kind of catalyst for other applications.
22 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., 2002, 114, 2708–2711.
Acknowledgements
We gratefully thank for the National Natural Science Founda-
tion of China (No. 21576289), the Science Foundation of
China University of Petroleum, Beijing (No. 2462015YQ0306,
2462016YJRC027, 2462014QZDX01 and C201603), Thousand
Talents Program and National High-tech R&D Program of China
(863 Program, No. 2015AA034603).
23 C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem.,
2002, 67, 3057–3062.
24 M. Gholinejad and N. Jeddi, ACS Sustainable Chem. Eng.,
2014, 2, 2658–2665.
25 S. Mohammed, A. K. Padala, B. A. Dar, B. Singh, B. Sreedhar,
R. A. Vishwakarma and S. Bharate, Tetrahedron, 2012, 68,
8156–8162.
26 B. S. P. Anil Kumar, K. Harsha Vardhan Reddy, K. Karnakar,
G. Satish and Y. V. D. Nageswar, Tetrahedron Lett., 2015, 56,
1968–1972.
References
1 R. Manetsch, A. Krasiski, Z. Radi, J. Raushel, P. Taylor,
K. B. Sharpless and H. C. Kolb, J. Am. Chem. Soc., 2004, 27 B. B. Lai, Z. P. Huang, Z. F. Jia, R. X. Bai and Y. L. Gu, Catal.
126, 12809–12818.
Sci. Technol., 2016, 6, 1810–1820.
2 G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. orba 28 A. S. Nia, S. Ran, D. Dohler, X. Noirfalise, A. Belore and
and A. A. Genazzani, Med. Res. Rev., 2008, 28, 278–308.
W. H. Binder, Chem. Commun., 2014, 50, 15374–15377.
3 Y. M. A. Yamada, A. hno, T. Sato and Y. Uozumi, Chem.–Eur. 29 T. N. Jin, M. Yan, Menggenbateer, T. Minato, M. Bao and
¨
J., 2015, 21, 17269–17273.
Y. Yamamoto, Adv. Synth. Catal., 2011, 353, 3095–
4 H. Nandivada, X. W. Jiang and J. Lahann, Adv. Mater., 2007,
19, 2197–2208.
5 P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel,
3100.
30 T. N. Jin, M. Yan and Y. Yamamoto, ChemCatChem, 2012, 4,
1217–1229.
´
B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless and 31 G. Avgouropoulos, T. Ioannides and H. Matralis, Appl. Catal.,
V. V. Fokin, Angew. Chem., Int. Ed., 2004, 43, 3928–3932.
B, 2005, 56, 87–93.
6 V. Aucagne, K. D. Hanni, D. A. Leigh, P. J. Lusby and 32 K. T. Liao, P. Shimpi and P. X. Gao, J. Mater. Chem., 2011, 21,
D. B. alker, J. Am. Chem. Soc., 2006, 128, 2186–2187. 9564–9569.
7 D. Astruc, R. Ciganda, C. Deraedt, S. atard, L. Liang, N. Li, 33 G. Avgouropoulos and T. Ioannides, Chem. Eng. J., 2011, 176,
C. Ornelas, A. Rapakousiou, J. Ruiz, D. Wang, Y. Wang and
14–21.
P. Zhao, Synlett, 2015, 26, 1437–1449.
34 A. Aslani and V. Oroojpour, Phys. B, 2011, 406, 144–149.
This journal is © The Royal Society of Chemistry 2017
RSC Adv., 2017, 7, 9567–9572 | 9571