5464
A. K. Ghosh et al. / Bioorg. Med. Chem. Lett. 22 (2012) 5460–5465
Figure 2. Stereoview of the model of inhibitor 4f (green carbon) with b-secretase. Possible hydrogen bonds between the inhibitor and b-secretase are shown in black dotted
lines.
potency over 3a (entry 2). Interestingly, this compound displayed
poor cellular b-secretase activity in neuroblastoma cells over 3a.
Introduction of a methyl group on the methylene side chain in 4b
resulted in 4c which showed a loss of potency (entry 3). Further-
more, chain elongation in 4d and incorporation of (2-isopro-
pylthiazol-4-yl)methyl substituent in 4e did not improve potency
(entries 4 and 5). Interestingly, incorporation of a methoxymethyl
substituent on the thiazole side chain in 4f resulted in nearly a six-
fold improvement of enzyme activity over 4b. Furthermore, inhib-
itor 4f has shown very potent cellular inhibitory properties in
neuroblastoma cells (entry 6). We have also investigated various
substituted pyrazolylmethyl groups (entries 7–9). Methyl substi-
tuted pyrazole derivative 4g is more potent than the unsubstituted
derivative 4h in both enzyme inhibitory and cellular assays.
Incorporation of methyl group on the pyrazole ring in 4i did not im-
prove potency over the N-alkylated or unalkylated derivatives.
To gain insight into specific ligand-binding site interactions, an
energy minimized model structure of 4f was created in the active
site of BACE1, based upon the crystal structure of 3a-bound b-secre-
tase.10 The conformation of 4f was optimized using the CHARMM
force field.25 As shown in Figure 2, 2-amino dihydroquinazoline
functionality forms a unique hydrogen bonding network with the
catalytic aspartic acids Asp32 and Asp228 and the (S)-cyclohexyl
group nicely filled in the S10-subsite as reported in the X-ray struc-
ture.10 The 2-methoxymethylthiazole moiety appears to fill in the
hydrophobic pocket in the S2-subsite. Furthermore, the methoxy
oxygen is within proximity to form a hydrogen bond with
Thr232. This may explain the sixfold enhancement of enzyme
inhibitory potency over the 2-methylthiazole derivative 4b. The
P1-cyclohexamide fits well into the S1-site of b-secretase.
Walters (Rosalind Franklin University of Medicine and Science) for
helpful discussions.
References and notes
1. Ghosh, A. K.; Brindisi, M.; Tang, J. J. Neurochem. 2012, 120, 71.
2. (a) Lin, X.; Koelsch, G.; Wu, S.; Downs, D.; Dashti, A.; Tang, J. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 1456; (b) Vassar, R.; Bennettt, B. D.; Babu-Khan, S.; Khan, S.;
Mendiaz, E. A.; Denis, P.; Teplow, D. B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo,
Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M. A.; Biere, A. L.; Curran,
E.; Burgess, T.; Louis, J. C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. Science
1999, 286, 735. and references cited therein.
3. (a) Selkoe, D. J. Nature 1999, 399, A23; (b) Selkoe, D. Physiol. Rev. 2001, 81, 741.
4. Ghosh, A. K.; Shin, D.; Downs, D.; Koelsch, G.; Lin, X.; Ermolieff, J.; Tang, J. J. Am.
Chem. Soc. 2000, 122, 3522.
5. Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A. K.; Zhang, X. C.;
Tang, J. Science 2000, 290, 150.
6. Tang, J.; Hong, L.; Ghosh, A. Aspartic Acid Proteases as Therapeutic Targets In
Ghosh, A. K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010; pp
413–440.
7. Iserloh, U.; Cumming, J. Aspartic Acid Proteases as Therapeutic Targets In
Ghosh, A. K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010; p 441.
8. Cole, D. C.; Bursavich, M. Aspartic Acid Proteases as Therapeutic Targets In
Ghosh, A. K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010; p 481.
9. (a) Ghosh, A. K.; Kumaragurubaran, N.; Hong, L.; Kulkarni, S.; Xu, X.; Miller, H.
B.; Reddy, D. S.; Weerasena, V.; Turner, R.; Chang, W.; Koelsch, G.; Tang, J.
Bioorg. Med. Chem. Lett. 2008, 18, 1031; (b) Chang, W.-P.; Huang, X.; Downs, D.;
Cirrito, J. R.; Koelsch, G.; Holtzman, D. M.; Ghosh, A. K.; Tang, J. FASEB J. 2011,
25, 775.
10. Baxter, E. W.; Conway, K. A.; Kennis, L.; Bischoff, F.; Mercken, M. H.; De Winter,
H. L.; Reynolds, C. H.; Tounge, B. A.; Luo, C.; Scott, M. K.; Huang, Y.; Braeken, M.;
Pieters, S. M. A.; Berthelot, D. J. C.; Masure, S.; Bruinzeel, W. D.; Jordan, A. D.;
Parker, M. H.; Boyd, R. E.; Qu, J.; Alexander, R. S.; Brenneman, D. E.; Reitz, A. B. J.
Med. Chem. 2007, 50, 4261.
11. Katritzky, A. R.; Wang, Z.; Hall, C. D.; Akhmedov, N. G. ARKIVOC 2003, 2, 49.
12. Ghosh, A. K.; Gemma, S.; Baldridge, A.; Wang, Y.-F.; Kovalevsky, A. Y.; Koh, Y.;
Weber, I. T.; Mitsuya, H. J. Med. Chem. 2008, 51, 6021.
13. Ghosh, A. K.; Xu, C.-X.; Kulkarni, S. S.; Wink, D. Org. Lett. 2005, 7, 7.
14. Nyasse, B.; Grehn, L.; Ragnarsson, U. Chem. Commun. 1997, 1017.
15. (a) Ghosh, A. K.; Kulkarni, S. Org. Lett. 2008, 10, 3907; (b) Nicolaou, K. C.;
Roschangar, F.; Vourloumis, D. Angew. Chem., Int. Ed. 1998, 37, 2014; (c) Virgil,
S. C. Aspartic Acid Proteases as Therapeutic Targets In Ghosh, A. K., Ed.; Wiley-
VCH Verlag GmbH & Co. KGaA: Weinheim, 2010; p 147. and references cited
therein.
In summary, we have carried out structure-based modifications
of 2-amino-3,4-dihydroquinazoline-derived b-secretase inhibitors.
In particular, we have incorporated thiazole and pyrazole-based
P2-ligands to make specific interactions in the S2-subsite. These
efforts resulted in inhibitors with improved potency and cellular
inhibitory properties compared to methyl-substituted inhibitor
3a. Inhibitor 4f has shown enhanced enzyme inhibitory activity
as well as very good cellular inhibitory potency in neuroblastoma
cells. A protein-ligand X-ray structure-based model of 4f-bound
b-secretase has provided important molecular insight into the li-
gand-binding site interactions. Further design and improvement
of inhibitor properties are currently in progress.
16. (a) Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.;
Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R.
S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory,
S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.;
Isakson, P. C. J. Med. Chem. 1997, 40, 1347; (b) Terrett, N. K.; Bell, A. S.; Brown,
D.; Ellis, P. Bioorg. Med. Chem. Lett. 1996, 6, 1819. and reference cited therein.
17. Sawada, D.; Shibasaki, M. Angew. Chem., Int. Ed. 2000, 39, 209.
18. Brunjes, M.; Sourkouni-Agirusi, G.; Kirschning, A. Adv. Synth. Catal. 2003, 345,
635.
19. Degoey, David A. et al, From U.S. Patent Appl. Publ., 20050131017, 16 June
2005.
20. Deady, L. W.; Stanborough, M. S. Aust. J. Chem. 1981, 34, 1295.
21. Hubbard, R. D.; Bamaung, N. Y.; Palazzo, F.; Zhang, Q.; Kovar, P.; Osterling, D. J.;
Hu, X.; Wilsbacher, J. L.; Johnson, E. F.; Bouska, J.; Wang, J.; Bell, R. L.; Davidsen,
S. K.; Shappard, G. S. Bioorg. Med. Chem. Lett. 2007, 17, 5406.
22. (a) Frey, R. R.; Curtin, M. L.; Albert, D. H.; Glaser, K. B.; Pease, L. J.; Soni, N. B.;
Bouska, J. J.; Reuter, D.; Stewart, K. D.; Marcotte, P.; Bukofzer, G.; Li, J.;
Acknowledgment
Financial support by the National Institutes of Health(AG 18933)
is gratefully acknowledged. We would like to thank Professor D. Eric