I
N. M. Xavier et al.
Letter
Synlett
(7) Malumbres, M.; Barbacid, M. Nat. Rev. Cancer 2009, 9, 153.
(8) (a) Shapiro, G. I. J. Clin. Oncol. 2006, 24, 1770. (b) Lapenna, S.;
Giordano, A. Nat. Rev. Drug Discovery 2009, 8, 547. (c) Canavese,
M.; Santo, L.; Raje, N. Cancer Biol. Ther. 2012, 13, 451.
(9) Cicenas, J.; Valius, M. J. Cancer Res. Clin. Oncol. 2011, 137, 1409.
(10) Mariaule, G.; Belmont, P. Molecules 2014, 19, 14366.
(11) Jorda, R.; Paruch, K.; Krystof, V. Curr. Pharm. Des. 2012, 18, 2974.
(12) Nemunaitis, J. J.; Small, K. A.; Kirschmeier, P.; Zhang, D.; Zhu, Y.;
Jou, Y. M.; Statkevich, P.; Yao, S. L.; Bannerji, R. J. Transl. Med.
2013, 11, 259.
(13) (a) Kimura, K.-i.; Bugg, T. D. H. Nat. Prod. Rep. 2003, 20, 252.
(b) Rachakonda, S.; Cartee, L. Curr. Med. Chem. 2004, 11, 775.
(14) (a) Xavier, N. M.; Schwarz, S.; Vaz, P. D.; Csuk, R.; Rauter, A. P.
Eur. J. Org. Chem. 2014, 2770. (b) Schwarz, S.; Csuk, R.; Rauter, A.
P. Org. Biomol. Chem. 2014, 12, 2446. (c) Meier, C.; Ducho, C.;
Görbig, U.; Esnouf, R.; Balzarini, J. J. Med. Chem. 2004, 47, 2839.
(15) (a) Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.;
Singh, D. Eur. J. Med. Chem. 2013, 70, 165. (b) Anand, P.; Singh,
B. Arch. Pharmacal. Res. 2013, 36, 375.
4.72 (m, J2',3' = 10.2 Hz, 2 H, H-2', H-4'), 4.45–4.29 (m, 2 H, H-6'a,
H-6'b), 4.11 (ddd, 1 H, H-5'), 3.17 (s, 3 H, OCH3), 2.51 (s, 3 H,
CH3, NHAc), 2.12, 2.06, 1.99 (3 × s, 9 H, CH3, OAc). 13C NMR (100
MHz, CDCl3): δ = 170.2, 170.1, 170.1 (CO, NHAc, CO, Ac), 152.8
(C-4), 152.2, 151.5 (C-2, C-6), 145.5 (C-8), 127.6 (C-5), 96.9 (C-
1'), 70.6 (C-2'), 69.7 (C-3'), 69.6 (C-4'), 67.5 (C-5'), 55.8 (OCH3),
43.9 (C-6'), 25.3 (CH3, NHAc), 20.9, 20.8, 20.7 (3 × CH3, OAc).
HRMS: m/z [M+Na]+ calcd for C20H24ClN5O9: 536.1155; found:
536.1152.
(26) Crich, D.; Cai, W.; Dai, Z. J. Org. Chem. 2000, 65, 1291.
(27) Mangholz, S. E.; Vasella, A. Helv. Chim. Acta 1991, 74, 2100.
(28) Edgar, L. J. G.; Dasgupta, S.; Nitz, M. Org. Lett. 2012, 14, 4226.
(29) (a) Batchelor, R. J.; Green, D. F.; Johnston, B. D.; Patrick, B. O.;
Pinto, B. M. Carbohydr. Res. 2001, 330, 421. (b) Lavecchia, M. J.;
Rodríguez, O. M.; Echeverría, G. A.; Pis Diez, R.; Colinas, P. A.
Carbohydr. Res. 2012, 361, 182. (c) Suthagar, K.; Polsona, M. I. J.;
Fairbanks, A. J. Org. Biomol. Chem. 2015, 13, 6573.
(30) Ronchi, S.; Prosperi, D.; Thimon, C.; Morin, C.; Panza, L. Tetrahe-
dron: Asymmetry 2005, 16, 39.
(16) Scozzafava, A.; Supuran, C. T. Subcell. Biochem. 2014, 75, 349.
(17) Carta, F.; Supuran, C. T.; Scozzafava, A. Future Med. Chem. 2014,
6, 1149.
(18) (a) Lopez, M.; Paul, B.; Hofmann, A.; Morizzi, J.; Wu, Q. K.;
Charman, S. A.; Innocenti, A.; Vullo, D.; Supuran, C. T.; Poulsen,
S.-A. J. Med. Chem. 2009, 52, 6421. (b) Rodríguez, O. M.;
Maresca, A.; Témpera, C. A.; Bravo, R. D.; Colinas, P. A.; Supuran,
C. T. Bioorg. Med. Chem. Lett. 2011, 21, 4447.
(31) Girard, C.; Önen, E.; Aufort, M.; Beauvire, S.; Samson, E.;
Herscovici, J. Org. Lett. 2006, 8, 1689.
(32) Synthesis of N-(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl 1-
Deoxy-1-(2-tosylhydrazin-1-yl)-β-D-glucopyranuronamide
(20) through N-Glycosylation: To a solution of N-(1-benzyl-
1H-1,2,3-triazol-4-yl)methyl-α,β-D-glucopyranuronamide (19;
250 mg. 0.69 mmol) in DMF (1.5 mL), p-toluenesulfonyl hydra-
zide (145 mg, 0.78 mmol, 1.1 equiv) and glacial acetic acid (4 μL,
0.07 mmol, 0.1 equiv) was added. The reaction mixture was
allowed to stand at 40 °C without stirring for 48 h, then the
solvent was evaporated under vacuum. Diethyl ether (20 mL)
was added to the residue and the mixture was vigorously
stirred for 24 h. The mixture was filtered and the white solid
was washed with diethyl ether, dichloromethane, and cold
methanol to give pure 20 (165 mg, 45%) as a white solid; mp
(19) Chohan, T. A.; Qian, H.; Pan, Y.; Chen, J.-Z. Curr. Med. Chem.
2015, 22, 237.
(20) (a) Nair, V.; Piotrowska, D. G.; Okello, M.; Vadakkan, J. Nucleo-
sides, Nucleotides Nucleic Acids 2007, 26, 687. (b) Tino, J. A.;
Clark, J. M.; Field, A. K.; Jacobs, G. A.; Lis, K. A.; Michalik, T. L.;
McGeever-Rubin, B.; Slusarchyk, W. A.; Spergel, S. H. J. Med.
Chem. 1993, 36, 1221. (c) Nair, V. Antiviral Isonucleosides: Dis-
covery, Chemistry and Chemical Biology, In Recent Advances in
Nucleosides: Chemistry and Chemotherapy; Chu, C. K., Ed.; Else-
vier: Oxford, 2002, 149–166.
(21) (a) Yu, H. W.; Zhang, L. R.; Zhuo, J. C.; Ma, L. T.; Zhang, L. H.
Bioorg. Med. Chem. 1996, 4, 609. (b) Yu, H.-W.; Zhang, H.-Y.;
Yang, Z.-J.; Min, J.-M.; Ma, L.-T.; Zhang, L.-H. Pure Appl. Chem.
1998, 70, 435.
20
154–155.7 °C; [α]D –2 (c = 0.4, MeOH). 1H NMR (400 MHz,
CD3OD): δ = 7.86 (s, 1 H, H-9), 7.77 (d, J = 8.1 Hz, 2 H, Ha, Ts),
7.43–7.27 (m, 7 H, Hb, Ts, Ph), 5.56 (s, 2 H, CH2, Bn), 4.50, 4.45
(2 × d, J = 15.7 Hz, AB system, CH2-7), 3.85 (d, J1,2 = 7.9 Hz, 1 H,
H-1), 3.65 (d, J4,5 = 8.5 Hz, 1 H, H-5), 3.49–3.36 (m, 2 H, H-2, H-
3, H-4), 2.43 (s, 3 H, Me, Ts). 13C NMR (100 MHz, CD3OD): δ =
172.3 (CO), 145.2 (Cq, Ts), 137.3 (2 × Cq, Ts, Ph), 130.7, 130.0,
129.6, 129.2, 129.0 (CH, Ts, Ph), 91.8 (C-1), 77.6 (C-3), 76.9 (C-5),
73.5, 71.0 (C-2, C-4), 55.0 (CH2, Bn), 35.2 (C-7), 21.5 (CH3, Ts).
HRMS: m/z [M+H]+ calcd for C23H28N6O7S: 533.1813; found:
533.1827.
(22) Silva, F. P. L.; Cirqueira, M. L.; Martins, F. T.; Vasconcellos, M. L. A.
A. J. Mol. Struct. 2013, 1052, 189.
(23) Jiang, C.; Li, B.; Guan, Z.; Yang, Z.; Zhang, L.; Zhang, L. Bioorg.
Med. Chem. 2007, 15, 3019.
(24) (a) Simons, C. Nucleoside Mimetics: Their Chemistry and Biologi-
cal Properties (Advanced Chemistry Texts); Gordon and Breach
Science Publishers: Amsterdam, 2001. (b) Zhang, J.; Chen, Y.;
Huang, Y.; Jin, H.-W.; Qiao, R.-P.; Xing, L.; Zhang, L.-R.; Yang, Z.-
J.; Zhang, L.-H. Org. Biomol. Chem. 2012, 10, 7566.
(33) For reviews on ‘click’ chemistry approaches in carbohydrate
chemistry, see: (a) Click Chemistry in Glycoscience, New Develop-
ments and Strategies; Witczak, Z. J.; Bielski, R., Eds.; John Wiley
& Sons. Inc: Hoboken, NJ, 2013. (b) Wilkinson, B. L.; Bornaghi,
L.; Houston, T. A.; Poulsen, S.-A. Click Chemistry in Carbohy-
drate-Based Drug Development and Glycobiology, In Drug Design
Research Perspectives; Kaplan, S. P., Ed.; Nova Science Publishers
Inc: NY, 2007, 57–102. (c) Xavier, N. M.; Lucas, S. D. Triazole-
Containing Carbohydrate Mimetics: Synthesis and Biological
Applications, In Targets in Heterocyclic Systems: Chemistry and
Properties; Vol. 18; Attanasi, O.; Noto, R.; Spinelli, D., Eds.;
Italian Society of Chemistry: Rome, 2014, 214–235.
(25) Synthesis of 2-Acetamide-6-chloro-9-(methyl 2,3,4-O-acetyl-
6-deoxy-α-D-glucopyranosid-6-yl)purine (2) through Mitsu-
nobu Reaction: To a solution of methyl 2,3,4-O-acetyl-α-D-glu-
copyranoside (1; 100 mg, 0.31 mmol) in THF (5 mL) under
nitrogen, PPh3 (163 mg, 0.62 mmol), diethyl azodicarboxylate
(DEAD; 0.62 mmol, 0.1 mL) and 2-acetamido-6-chloropurine
(132 mg, 0.62 mmol) were sequentially added. The mixture was
stirred at r.r. under nitrogen for 16 h. The solvent was evapo-
rated and the residue was subjected to column chromatography
on silica gel (EtOAc–petroleum ether, 1:1 to 1:9) to afford 2 (128
(34) Synthesis of N-[1-(Methyl 2,3,4-O-acetyl-6-deoxy-α-D-gluco-
pyranosid-6-yl)-1H-1,2,3-triazol-4-yl]methyl-1,2-O-isopro-
pylidene-α-D-glucofuranuronamide
(34)
through
20
mg, 80%) as a white solid. [α]D +15 (c = 0.3, CHCl3). 1H NMR
CuI/Amberlyst A21-Catalyzed Cycloaddition: To a solution of
N-propargyl 1,2-O-isopropylidene-α-D-glucofuranuronamide
(17; 180 mg, mg, 0.66 mmol) in dichloromethane (7 mL),
(400 MHz, CDCl3): δ = 8.22 (s, 1 H, NH), 8.13 (s, 1 H, H-8), 5.46
(t, J = 9.4 Hz, 1 H, H-3'), 4.96 (d, J1',2' = 3.5 Hz, 1 H, H-1'), 4.84–
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, A–J