than in Me2CO. Ka values for the complexation of CBPQT4+ with
MPTTF derivatives have been reported5d in the range 1300–4000 M21 in
Me2CO at room temperature. Consequently Ka values at room
temperature in the range 5000–16000 M21, corresponding to DGu values
in the range of 25–26 kcal mol21, in MeCN/PhCN are expected.
1 J. F. Stoddart and H.-R. Tseng, Proc. Natl. Acad. Sci. U. S. A., 2002,
99, 4797.
2 (a) J. L. Segura andN. Mart´ın, Angew. Chem., Int. Ed., 2001, 40, 1372; (b)
G. Schukat and E. Fangha¨nel, Sulfur Rep., 2003, 24, 1; (c) J. O. Jeppesen,
M. B. Nielsen and J. Becher, Chem. Rev., 2004, 104, 5115.
3 (a) V. Balzani, A. Credi, G. Mattersteig, O. A. Matthews, F. M. Raymo,
J. F. Stoddart, M. Venturi, A. J. P. White and D. J. Williams, J. Org.
Chem., 2000, 65, 1924; (b) C. P. Collier, G. Mattersteig, E. W. Wong,
Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart and
J. R. Heath, Science, 2000, 289, 1172; (c) M. R. Diehl, D. W. Steuerman,
H.-R. Tseng, S. A. Vignon, A. Star, P. C. Celestre, J. F. Stoddart and
J. R. Heath, ChemPhysChem, 2003, 4, 1335; (d) Y.-H. Kim, S. S. Jang,
Y. H. Jang and W. A. Goddard, III, Phys. Lett. Rev., 2005, 94, 156801.
4 (a) A. H. Flood, A. J. Peters, S. A. Vignon, D. W. Steuerman,
H.-R. Tseng, S. Kang, J. R. Heath and J. F. Stoddart, Chem.-Eur. J.,
2004, 10, 6558; (b) A. H. Flood, J. F. Stoddart, D. W. Steuerman and
J. R. Heath, Science, 2004, 306, 2055; (c) P. M. Mendes, A. H. Flood
and J. F. Stoddart, Appl. Phys. A: Solid Surf., 2005, 80, 1197.
5 (a) Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. DeIonno,
G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J. F. Stoddart and
J. R. Heath, ChemPhysChem, 2002, 3, 519; (b) J. O. Jeppesen,
K. A. Nielsen, J. Perkins, S. A. Vignon, A. DiFabio, R. Ballardini,
M. T. Gandolfi, M. Venturi, V. Balzani, J. Becher and J. F. Stoddart,
Chem.-Eur. J., 2003, 9, 2982; (c) S. Kang, S. A. Vignon, H.-R. Tseng
and J. F. Stoddart, Chem.-Eur. J., 2004, 10, 2555; (d) J. O. Jeppesen,
S. Nygaard, S. A. Vignon and J. F. Stoddart, Eur. J. Org. Chem., 2005,
196; For recent examples of bistable rotaxanes based on metal–ligand
bonding, see; (e) J.-P. Sauvage, Chem. Commun., 2005, 1507; and on
hydrogen-bonding, see; (f) A. Alteri, F. G. Gatti, E. R. Kay, D. A. Leigh,
D. Martel, F. Paolucci, A. M. Z. Slawin and J. K. Y. Wong, J. Am.
Chem. Soc., 2003, 125, 8644.
Fig. 2 Scaled schematic representation of the potential energy surface of
54+, in its three oxidation states 54+, 55+ and 56+ as a function of the
reaction coordinate. The bottom of the well for 54+ is approximated{{ by
the binding energy 26 kcal mol21 between free MPTTF and the
CBPQT4+ ring.
is mainly a result of the electrostatic repulsion** between MPTTF+
or MPTTF2+ units and the tetracationic CBPQT4+ ring. Thus, a
linear motor built from the same components has upwards of ca.
9 kcal mol21 to use from the powered movement of the CBPQT4+
ring following two-electron oxidation of the MPTTF unit. On
account of the electrostatic nature of this working stroke, it should
be noted that higher as well as lower values are to be expected in
other environments, depending on the local dielectric and specific
ion pairing.
6 (a) H.-R. Tseng, D. Wu, N. X. Fang, X. Zhang and J. F. Stoddart,
ChemPhysChem, 2004, 5, 111; (b) D. W. Steuerman, H.-R. Tseng,
A. J. Peters, A. H. Flood, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddartand
J. R. Heath, Angew. Chem., Int. Ed., 2004, 43, 6486; (c) T. D. Nguyen,
H.-R. Tseng, P. C. Celestre, A. H. Flood, Y. Liu, J. F. Stoddart and
J. I. Zink, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10029.
7 T. J. Huang, B. Brough, C.-M. Ho, Y. Liu, A. H. Flood, P. A. Bonvallet,
H.-R. Tseng, J. F. Stoddart, M. Baller and S. Magonov, Appl. Phys.
Lett., 2004, 85, 5391.
We thank the University of Southern Denmark and the
Danish Natural Science Research Council (SNF, grants #21-
03-0014 and #21-03-0317), the Oticon and MODECS founda-
tions, the Center for NanoScale Innovation for Defense
(CNID), and the Defense Advanced Research Projects
Agency (DARPA) for financial support.
8 (a) V.Balzani,A.CrediandM.Venturi,Molecular Devices and Machines:
A Journey into the Nanoworld, Wiley-VCH, Weinheim, 2003; (b) Towards
rotary molecular motors, see: R. A. van Delden, T. Mecca, C. Rosini and
B. L. Feringa, Chem.-Eur. J., 2004, 10, 61; (c) J. V. Hernandez, E. R. Kay
and D. A. Leigh, Science, 2004, 306, 1532; (d) S. Hiraoka, K. Hirata and
M. Shionoya, Angew. Chem., Int. Ed., 2004, 43, 3814; (e) For the kinetics
of movement in surface-bound [2]rotaxanes, see: E. Katz,
O. Lioubashevsky and I. Willner, J. Am. Chem. Soc., 2004, 126, 15520;
(f) For a recent review on biological and artifical molecular machines, see:
K. Kinbara and T. Aida, Chem. Rev., 2005, 105, 1377.
9 M. J. Plater, A. Aiken and G. Bourhill, Tetrahedron, 2002, 58, 2405.
10 D. Philp, A. M. Z. Slawin, N. Spencer, J. F. Stoddart and D. J. Williams,
J. Chem. Soc., Chem. Commun., 1991, 1584.
11 P.-L. Anelli, M. Asakawa, P. R. Ashton, R. A. Bissell, G. Clavier,
R. Go´rski, A. E. Kaifer, S. J. Langford, G. Mattersteig, S. Menzer,
D. Philp, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, M. S. Tolley and
D. J. Williams, Chem.-Eur. J., 1997, 3, 1113.
Notes and references
§ One of us, and later Bryce, investigated the green 1 : 1 complex formed
between CBPQT4+ and TTF. Originally, in a communication,10 a Ka value
of 51 M21 for the 1 : 1 complex in MeCN at 300 K was reported.
Subsequently, it wasfound that this Ka valuewas in error. After numerous
experimentshadbeencarriedoutbyboththeStoddartgroup11andBryce,12
a consistent conclusion was reached—that is, that the Ka value is ca.
10000M21 inMeCNat 298K,whileinMe2COat298Kitisca. 2600M21
.
Later,theabilityofCBPQT4+tohostpolyether-linkedTTFderivativeswas
investigated,3a,13 and it was found that the ethyleneoxy substituents are of
paramount importance in assisting the complexation process by virtue of
…
theirenteringinto[C–H O]interactionswithsomeofthea-CH hydrogen
atoms in the bipyridinium units of CBPQT4+. Finally, the 1 : 1 complex
formation between CBPQT4+ and structurally modified TTF derivatives
hasbeeninvestigated,14 andithasbeenconcluded15 thatthestrengthofthe
binding between TTF derivatives and CBPQT4+ is strongly dependent on
the p-electron donating ability of the TTF derivatives.
12 W. Devonport, M. A. Blower, M. R. Bryce and L. M. Goldenberg,
J. Org. Chem., 1997, 62, 885.
13 M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, G. Mattersteig,
O. Matthews, N. Montalti, N. Spencer, J. F. Stoddart and M. Venturi,
Chem.-Eur. J., 1997, 3, 1992.
" Beside CBPQT4+ being able to host TTF and its derivatives, it has very
recently been demonstrated16 that TTF can be used as an efficient template
for the synthesis of CBPQT4+
.
I Based on the half-wave potentials, there is a 16 mV driving force for this
14 (a) J. Lau, M. B. Nielsen, N. Thorup, M. P. Cava and J. Becher, Eur.
J. Org. Chem., 1999, 3335; (b)M.R.Bryce,G.Cooke,F.M.A.Duclairoir
and V. M. Rotello, Tetrahedron Lett., 2001, 42, 1143.
15 M. B. Nielsen, J. O. Jeppesen, J. Lau, C. Lomholt, D. Damgaard,
J. P. Jacobsen, J. Becher and J. F. Stoddart, J. Org. Chem., 2001, 66,
3559.
reaction.{
** Thenatureofthepotentialenergysurfaceinthevicinityoftheinteraction
oftheCBQPT4+ringwiththeMPTTF+radicalcationorMPTTF2+dication
is expected to be transition state-like in character. Consequently, we
associate the lowest energy states with highly distorted co-conformations.
{{ Several studies5b,11–16 have shown that the complexation of CBPQT4+
with different TTF derivatives is around four times stronger in MeCN
16 G. Doddi, G. Ercolani, P. Mencarelli and A. Piermattei, J. Org. Chem.,
2005, 70, 3761.
146 | Chem. Commun., 2006, 144–146
This journal is ß The Royal Society of Chemistry 2006