Scheme 2
the presence of BF3‚OEt2 in THF-Et2O at -78 °C produced
of the allylic TBS ether furnished 10 in 70% yield over two
steps. At this point, the stage was set to manipulate allylic
alcohol 10 to the requisite R,â-unsaturated ketone 12 and to
install the remaining stereogenic centers. The 1,3-isomer-
ization of 10 and subsequent oxidation promised to be an
the allyl alcohol 6 in 50% yield and 14:1 anti/syn selectivity.
Silyl protection of the hydroxyl group and a regioselective
hydroboration-oxidation sequence furnished alcohol 7,
which was oxidized to the corresponding aldehyde 8 using
Dess-Martin periodinane. The asymmetric methylation of
8 with Me2Zn and Ti(OiPr)4 was examined with the chiral
ligands BINOL and bissulfonamide.8 Unfortunately, the
conversions were unacceptable in both cases (25% and 29%,
respectively). However, diastereoselective methylation to
obtain 9 was achieved with Seebach’s method9 [Me2Zn and
Ti(OiPr)4 in the presence of (-)-TADDOL] in 92% yield
10
atom-efficient method to access ketone 12. Ph3SiOReO3
is currently the most effective catalyst for 1,3-isomerization.11
When we treated 10 in the presence of 1 mol % catalyst in
ether at -60 °C, complete isomerization to regioisomeric
allylic alcohol 11 was observed in 5 min. Oxidation of the
alcohol 11 under Dess-Martin periodinane conditions
furnished the R,â-unsaturated ketone 12. Swapping TIPS
protection with TBS, Sharpless asymmetric dihydroxylation12
followed by acetonide formation completed the synthesis of
fragment 2.
1
and a 5-7:1 diastereomeric ratio (based on H NMR).
Protection of the free alcohol as a TIPS ether (the minor
isomer can be separated at this stage) and selective cleavage
The synthesis of fragment 3 started with known vinyl
iodide 1313 (Scheme 3). Transmetalation with t-BuLi in Et2O
and capture of the resulting vinyllithium species with
acetaldehyde yielded (()-allylic alcohol 14. Sharpless kinetic
resolution14 of (()-14 gave the desired epoxide 15 in 85-
90% enantiomeric excess (ee) and unreacted alcohol in 25-
30% ee as a mixture that proved difficult to separate. The
crude mixture was subjected to a Parikh-Doering oxidation
to yield easily separable epoxy ketone 16 and the corre-
sponding R,â-unsaturated ketone (not shown). The R,â-
unsaturated ketone was subjected to a Luche reduction to
produce (()-allylic alcohol 14, which was recycled under
Sharpless kinetic resolution conditions. The Horner-Wads-
worth-Emmons condensation of epoxy ketone 16 with
phosphonate in the presence of NaHMDS produced enyne
17 [82% yield, E/Z ) 6:1]. Simultaneous cleavage of TBS
(3) (a) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77. (b) Cid,
M. B.; Pattenden, G. Synlett 1998, 540. (c) Cid, M. B.; Pattenden, G.
Tetrahedron Lett. 2000, 41, 7373. (d) Ishiyama, H.; Takemura, T.; Tsuda,
M.; Kobayashi, J. Tetrahedron 1999, 55, 4583. (e) Ishiyama, H.; Takemura,
T.; Tsuda, M.; Kobayashi, J. J. Chem. Soc., Perkin Trans. 1 1999, 1163.
(f) Ohi, K.; Shima, K.; Hamada, K.; Saito, Y.; Yamada, N.; Ohba, S.;
Nishiyama, S. Bull. Chem. Soc. Jpn. 1998, 71, 2433. (g) Ohi, K.; Nishiyama,
S. Synlett 1999, 573. (h) Ohi, K.; Nishiyama, S. Synlett 1999, 571. (i)
Chakraborty, T. K.; Thippeswamy, D.; Suresh, V. R.; Jayaprakash, S. Chem.
Lett. 1997, 563. (j) Chakraborty, T. K.; Thippeswamy, D. Synlett 1999,
150. (k) Chakraborty, T. K.; Thippeswamy, D.; Jayaprakash, S. J. Ind. Chem.
Soc. 1998, 75, 741. (l) Chakraborty, T. K.; Suresh, V. R.; Vayalakkada, R.
Chem. Lett. 1997, 565. (m) Eng, H. M.; Myles, D. C. Tetrahedron Lett.
1999, 40, 2275. (n) Eng, H. M.; Myles, D. C. Tetrahedron Lett. 1999, 40,
2279. (o) Lee, D.-H.; Lee, S.-W. Tetrahedron Lett. 1997, 38, 7909. (p)
Lee, D.-H.; Rho, M.-D. Bull. Korean Chem. Soc. 1998, 19, 386. (q) Lee,
D.-H.; Rho, M.-D. Tetrahedron Lett. 2000, 41, 2573. (r) Zhang, W.; Carter,
R. G.; Yokochi, A. F. T. J. Org. Chem. 2004, 69, 2569.
(4) Mandal, A. K.; Schneekloth, J. S., Jr.; Crews, C. M. Org. Lett. 2005,
7, 3645.
(5) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.;
Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314.
(6) Evans, D. A.; Carter, P. H.; Carreira, E. M.; Charette, A. B.; Prunet,
J. A.; Lautens, M. J. Am. Chem. Soc. 1999, 121, 7540.
(7) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293.
(8) (a) Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.; Kobayashi,
S. Tetrahedron 1992, 48, 5691. (b) Kitamoto, D.; Imma, H.; Nakai, T.
Tetrahedron Lett. 1995, 36, 1861.
(9) (a) Schmidt, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1991, 30,
99. (b) von dem Bussche-Hunnefeld, J. L.; Seebach, D. Tetrahedron 1992,
48, 5719.
(10) Schoop, T.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.
Organometallics 1993, 12, 571.
(11) Bellemin-Laponnaz, S.; Gisie, H.; Le Ny, J.-P.; Osborn, J. A. Angew
Chem., Int. Ed. Engl. 1997, 36, 976.
(12) Walsh, P. J.; Sharpless, K. B. Synlett 1993, 605.
(13) Ashimori, A.; Bachand, B.; Calter, M. A.; Govek, S. P.; Overman,
L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6488.
(14) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.;
Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
428
Org. Lett., Vol. 8, No. 3, 2006