X
O
S
O
O
O
MX
S
(eq-1)
Ph
AcOH
Ph
2a
H
1a
conversion
LiCl (1 equiv), 80 oC, 1 h
LiCl (2 equiv), 80 oC, 1 h
LiCl (4 equiv), 80 oC, 1 h
8%
12%
15%
LiCl (4 equiv), rt, 4 h
LiBr (4 equiv), rt, 4 h
LiI (4 equiv), rt, 4 h
5%
40%
80%
To gain some insight of the mechanism, we conducted simple kinetic studies (eq-1). The rate of the reactions increased with the
concentration of nucleophiles (LiCl), the rate also increased when a more nucleophilic MX was used (rate: LiI>LiBr>LiCl).
)
n
OAc
H
(
n
)
OAc
H
(
O
O
O
O
O
S
O
Cl
O
O
1
S
S
(HOAc)n
R1
R1
2
R2
S
R1
R1
R2
R2
R2
H
1
Cl-
AdE3 mechanism
-regioselectivity
anti-steoroselectivity
NBO charge density of
1.
(HOAc)3:
C1: -0.408
C2: 0.182
Scheme 3. Proposed mechanism.
The proposed mechanism is shown in Scheme 3. Because the sulfonyl alkynes 1 are relatively electron deficient, the direct
protonation of 1 via proton transfer is difficult (specific acid catalysis), so we propose an AdE3 mechanism29 (Scheme 3). This
mechanism is consistent with the kinetic data that the rate of reaction increases with concentration of nucleophile (eq-1).30 The
exclusive formation of the E-isomer (anti-addition) was also consistent with the AdE3 mechanism. The regio-selectivity found can be
rationalized by the fact that the NBO charge density of C1 is significantly higher than C2 (in 1.(HOAc)3) due to electron withdrawing of
a sulfonyl group (Scheme 3). The exclusive anti-addition is in contrast with formation of Z/E mixture in the literature reports of
hydrohalogenations of allkynylnitriles20 and alkynyl acids or esters using MX/AcOH system.21a, b
In summary, we have developed a widely applicable, highly efficient synthesis of Z- halo sulfonyl alkenes via hydrohalogenations of
sulfonyl alkynes. Other applications of hydrogen bonding network assisted catalytic systems are currently being investigated in our
laboratories.
Acknowledgments
We are grateful to the National Science Foundation of China for financial support (NSFC-21472018 and NSFC-21672035).
References and notes
1. (a) Nunnery, J. K.; Engene, N.; Byrum, T.; Cao, Z.; Jabba, S. V.; Pereira, A. R.; Matainaho, T.; Murray, T. F.; Gerwick, W. H. J. Org. Chem. 2012, 77, 4198-
4208; (b) Akiyama, T.; Takada, K.; Oikawa, T.; Matsuura, N.; Ise, Y.; Okada, S.; Matsunaga, S. Tetrahedron 2013, 69, 6560-6564; (c) Chung, W.-j.; Vanderwal,
C. D. Angew. Chem. Int. Ed. 2016, 55, 4396-4434; (d) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442-4489; (e) Jana, R.;
Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417-1492; (f) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945-2964.
2. (a) Wu, W.; Jiang, H. Acc. Chem. Res. 2014, 47, 2483-2504; (b) JohanssonꢀSeechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int.
Ed. 2012, 51, 5062-5085.
3. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
4. (a) Negishi, E.-i.; Anastasia, L. Chem. Rev. 2003, 103, 1979-2018; (b) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467-4470.
5. (a) Espinet, P.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 4704-4734; (b) Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508-524.
6. (a) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534-1544; (b) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564-12649.
7. (a) Xiaoming, Z.; Laurean, I.; Nakamura, E. Org. Lett. 2012, 14, 954-956; (b) Li, X.; Shi, X.; Fang, M.; Xu, X. J. Org. Chem. 2013, 78, 9499-9504.
8. Wan, J.-P.; Hu, D.; Bai, F.; Wei, L.; Liu, Y. RSC Advances 2016, 6, 73132-73135.
9. (a) Taniguchi, N. Tetrahedron 2018, 74, 1454-1460; (b) Taniguchi, N. J. Org. Chem. 2015, 80, 7797-7802; (c) Taniguchi, N. Tetrahedron 2014, 70, 1984-
1990; (d) Taniguchi, N. Synlett 2012, 23, 1245-1249; (e) Taniguchi, N. Synlett 2011, 1308-1312; (f) Taniguchi, N. Tetrahedron 2009, 65, 2782-2790.
10. (a) Huang, X.; Duan, D.; Zheng, W. J. Org. Chem. 2003, 68, 1958-1963; (b) Hou, Y.; Zhu, L.; Hu, H.; Chen, S.; Li, Z.; Liu, Y.; Gong, P. New J. Chem. 2018,
42, 8752-8755; (c) Amiel, Y. J. Org. Chem. 1971, 36, 3697-702; (d) Truce, W. E.; Wolf, G. C. J. Org. Chem. 1971, 36, 1727-32; (e) Ravi, K.; Vikas, D.; Maddi,
S. R. Adv. Synth. Catal. 2017, 359, 2847-2856; (f) Gao, Y.; Wu, W.; Huang, Y.; Huang, K.; Jiang, H. Org. Chem. Front. 2014, 1, 361-364; (g) Gilmore, K.;
Gold, B.; Clark, R. J.; Alabugin, I. V. Aust. J. Chem. 2013, 66, 336-340; (h) Wei, W.; Wen, J.; Yang, D.; Jing, H.; You, J.; Wang, H. RSC Advances 2015, 5,
4416-4419; (i) Sun, Y.; Abdukader, A.; Lu, D.; Zhang, H.; Liu, C. Green Chem. 2017, 19, 1255-1258.
11. Yuanchao, X.; Yunyan, K.; Jie, W. Chem. Eur. J. 2017, 23, 6996-6999.
12. Bao, Y.; Yang, X.; Zhou, Q.; Yang, F. Org. Lett. 2018, 20, 1966-1969.
13. (a) Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48-76; (b) Jeffrey, G. A. Crystallography Reviews 2003, 9, 135-176; (c) Pihko, P. M., Hydrogen bonding in
organic synthesis. Wiley-VCH: Weinheim, 2009.
14. Zeng, X.; Li, J.; Ng, C. K.; Hammond, G. B.; Xu, B. Angew. Chem. Int. Ed. 2018, 57, 2924-2928.
15. Lu, Z.; Zeng, X.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2017, 139, 18202-18205.
16. Zeng, X.; Liu, S.; Shi, Z.; Xu, B. Org. Lett. 2016, 18, 4770-4773.
17. Liu, G.; Xu, B. Tetrahedron Lett. 2018, 59, 869-872.