Iron Dinitrogen Complexes
A R T I C L E S
manner reminiscent of proposals by Sellmann.13 A very recent
study shows a single N environment for an apparent adduct of
N2 (or reduced form thereof) on the FeMoco, which is consistent
with a symmetrical binding mode.14
In addition to nitrogenase, there are heterogeneous iron
systems that catalytically reduce dinitrogen. Some iron oxide15
and iron sulfide16 surfaces produce ammonia from N2. Most
industrially relevant is the Haber-Bosch process, in which
ammonia is synthesized from nitrogen and hydrogen over an
iron catalyst.17 Single-crystal iron surfaces reduce N2, and the
(111) face of iron is most active.18 LEED experiments suggest
that N2 bound to Fe(111) is strongly inclined rather than
perpendicular to the surface.19 Therefore, N2 bridged between
iron atoms is again a potential binding mode.
Figure 1. FeMo cofactor “FeMoco” of iron-molybdenum nitrogenase in
the native form. X ) C, N or O.
8
Spectroscopic investigations with 15N2 and the spectroscopic
similarity of active and inactive forms of the enzyme2 argue
against the interstitial atom resulting from splitting of N2,
suggesting that its role may be structural.
Despite the importance of these iron catalysts, the current
understanding of N2 reduction chemistry in synthetic iron
compounds is rudimentary. Some solution Fe-N2 systems have
been reported to give hydrazine or ammonia upon proto-
nation,20-22 but these systems are not understood at a mecha-
nistic level. For example, uncharacterized mixtures of iron(III)
chloride and strong reducing agents are reported to give
hydrazine upon protonation.20 Treatment of some iron-phos-
phine-N2 complexes with excess acid gives limited amounts
of ammonia.23 In a well-characterized recent study, the reduced
The picture in Figure 1 is not strictly relevant to N2 binding
by the FeMoco, because the crystallographically characterized
native state of the FeMoco does not bind substrates. Several
reducing equivalents are required before N2 binds.9 ENDOR
studies of mutant enzymes are most consistent with binding of
products at the central iron atoms.10 These results are most easily
interpreted within a model where reduction and substrate binding
are coupled to cleavage and formation of bonds between iron
and X.11,12 Recent computational studies support this idea,
6b,7d,e,10g
dinitrogen complex Fe(PhBPiPr3)(N2)MgCl(THF)2 (PhBPiPr
)
and one has even located low-energy transition states
3
for each proposed step of N2 binding and activation.7d Interest-
ingly, in this mechanism, the FeMoco breaks open at one
bridging sulfide to bind N2 as an Fe-NN-Fe intermediate, and
this intermediate is subsequently protonated by a thiol, in a
PhB(CH2PiPr2)3-) reacts with electrophiles to give a diazenido
ligand derived from dinitrogen.24
One important difference between the catalytic iron sites and
synthetic iron compounds is the coordination number at iron,
which is typically 5 or 6 for synthetic compounds but possibly
lower in the active forms of the catalysts. Because the bulky
â-diketiminate ligands, LMe and LtBu (Figure 2) stabilize
synthetic complexes with three-coordinate and four-coordinate
iron centers,12 it is possible to evaluate the importance of iron
coordination number. Here, we show that when N2 binds to low-
coordinate iron, the N-N bond becomes much weaker than in
other iron-N2 complexes. Further, we evaluate the structural
(6) (a) Yoo, S. J.; Angove, H. C.; Papaefthymiou, V.; Burgess, B. K.; Mu¨nck,
E. J. Am. Chem. Soc. 2000, 122, 4926-4936. (b) Vrajmasu, V.; Mu¨nck,
E.; Bominaar, E. L. Inorg. Chem. 2003, 42, 5974-5988.
(7) Calculations support the idea that X is a nitrogen atom: (a) Dance, I. Chem.
Commun. 2003, 324-325. (b) Hinnemann, B.; Norskov, J. K. J. Am. Chem.
Soc. 2003, 125, 1466-1467. (c) Lovell, T.; Liu, T.; Case, D. A.;
Noodleman, L. J. Am. Chem. Soc. 2003, 125, 8377-8383. (d) Schimpl, J.;
Petrilli, H. M.; Blo¨chl, P. E. J. Am. Chem. Soc. 2003, 125, 15772-15778.
(e) Huniar, U.; Ahlrichs, R.; Coucouvanis, D. J. Am. Chem. Soc. 2004,
126, 2588-2601. (f) Hinnemann, B.; Norskov, J. K J. Am. Chem. Soc.
2004, 126, 3920-3927. However, recent ENDOR and ESEEM studies
argue strongly against nitrogen as X: Yang, T.-C.; Maeser, N. K.;
Laryukhin, M.; Lee, H.-I.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. J.
Am. Chem. Soc. 2005, 127, 12804-12805.
(13) Sellmann, D.; Sutter, J. Acc. Chem. Res. 1997, 30, 460-469.
(14) Barney, B. M.; Yang, T.-C.; Igarashi, R. Y.; Dos Santos, P. C.; Laryukhin,
M.; Lee, H.-I.; Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. J. Am. Chem.
Soc. 2005, 127, 14960-14961.
(8) (a) Thomann, H.; Morgan, T. V.; Jin, H.; Burgmayer, S. J. N.; Bare, R. E.;
Stiefel, E. I. J. Am. Chem. Soc. 1987, 109, 7913-7914. (b) Lee, H.-I.;
Benton, P. M. C.; Laryukhin, M.; Igarashi, R. Y.; Dean, D. R.; Seefeldt,
L. C.; Dean, D. R. J. Am. Chem. Soc. 2003, 125, 5604-5605.
(15) Brandes, J. A.; Boctor, N. Z.; Cody, G. D.; Cooper, B. A.; Hazen, R. M.;
Yoder, H. S. Nature 1998, 395, 365-367.
(9) (a) Lowe, D. J.; Thorneley, R. N. F. Biochem. J. 1984, 224, 877-886. (b)
Thorneley, R. N. F.; Lowe, D. J. Biochem. J. 1984, 224, 887-894. (c)
Lowe, D. J.; Thorneley, R. N. F. Biochem. J. 1984, 224, 895-901. (d)
Thorneley, R. N. F.; Lowe, D. J. Biochem. J. 1984, 224, 903-909.
(10) (a) Christiansen, J.; Dean, D. R.; Seefeldt, L. C. Annu. ReV. Plant Physiol.
Plant Mol. Biol. 2001, 52, 269-295. (b) Benton, P. M. C.; Mayer, S. M.;
Shao, J.; Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Biochemistry 2001,
40, 13816-13825. (c) Benton, P. M. C.; Christiansen, J.; Dean, D. R.;
Seefeldt, L. C. J. Am. Chem. Soc. 2001, 123, 1822-1827. (d) Mayer, S.
M.; Niehaus, W. G.; Dean, D. R. J. Chem. Soc., Dalton Trans. 2002, 802-
807. (e) Benton, P. M. C.; Laryukhin, M.; Mayer, S. M.; Hoffman, B. M.;
Dean, D. R.; Seefeldt, L. C. Biochemistry 2003, 42, 9102-9109. (f) Lee,
H.-I.; Igarashi, R. Y.; Laryukhin, M.; Doan, P. E.; Dos Santos, P. C.; Dean,
D. R.; Seefeldt, L. C.; Hoffman, B. M. J. Am. Chem. Soc. 2004, 126, 9563-
9569. (g) Igarashi, R. Y.; Dos Santos, P. C.; Niehaus, W. G.; Dance, I. G.;
Dean, D. R.; Seefeldt, L.C. J. Biol. Chem. 2004, 279, 34770-34775. (h)
Barney, B. M.; Igarashi, R.Y.; Dos Santos, P. C.; Dean, D. R.; Seefeldt, L.
C. J. Biol. Chem. 2004, 279, 53621-53624. (i) Dos Santos, P. C.; Igarashi,
R. Y.; Lee, H.-I.; Hoffman, B. M.; Seefeldt, L. C.; Dean, D. R. Acc. Chem.
Res. 2005, 38, 208-214. (j) Barney, B. M.; Laryukhin, M.; Igarashi, R.
Y.; Lee, H.-I.; Dos Santos, P. C.; Yang, T.-C.; Hoffman, B. M.; Dean, D.
R.; Seefeldt, L. C. Biochemistry 2005, 44, 8030-8037. (k) Igarashi, R.
Y.; Laryukhin, M.; Dos Santos, P. C.; Lee, H.-I.; Dean, D. R.; Seefeldt, L.
C.; Hoffman, B. M. J. Am. Chem. Soc. 2005, 127, 6231-6241.
(16) Do¨rr, M.; Ka¨bbohrer, J.; Grunert, R.; Kreisel, G.; Brand, W. A.; Werner,
R. A.; Geilmann, H.; Apfel, C.; Robl, C.; Weigand, W. Angew. Chem.,
Int. Ed. 2003, 42, 1540-1543.
(17) Jennings, J. R. Catalytic Ammonia Synthesis: Principles and Practice;
Plenum: New York, 1991.
(18) (a) Dumesic, J. A.; Topsøe, H.; Boudart, M. J. Catal. 1975, 37, 513-522.
(b) Spencer, N. D.; Schoonmaker, R. C.; Somorjai, G. J. Catal. 1982, 74,
129-135. (c) Falicov, L. M.; Somorjai, G. A. Proc. Natl. Acad. Sci. U.S.A.
1985, 82, 2207-2211.
(19) (a) Grunze, M.; Golze, M.; Hirschwald, W.; Freund, H. J.; Pulm, H.; Seip,
U.; Tsai, M. C.; Ertl, G.; Kueppers, J. Phys. ReV. Lett. 1984, 53, 850-
853. (b) Freund, H. J.; Bartos, B.; Messmer, R. P.; Grunze, M.; Kuhlenbeck,
H.; Neumann, M. Surf. Sci. 1987, 185, 187-202.
(20) (a) Borodko, Y. G.; Broitman, M. O.; Kachapina, L. M.; Shilov, A. E.;
Ukhin, L. Y. J. Chem. Soc. D, Chem. Commun. 1971, 1185-1186. (b)
Bazhenova, T. A.; Ivleva, I. N.; Kachapina, L. M.; Shilova, A. K.; Shilov,
A. E.; Tchoubar, B. J. Organomet. Chem. 1985, 296, 95-101. (c)
Bazhenova, T. A.; Kachapina, L. M.; Shilov, A. E.; Antipin, M. Y.;
Struchkov, Y. T. J. Organomet. Chem. 1992, 428, 107-123.
(21) Yamamoto, A.; Miura, Y.; Ito, T.; Chen, H.-L.; Iri, K.; Ozawa, F.; Miki,
K.; Sei, T.; Tanaka, N.; Kasai, N. Organometallics 1983, 2, 1429-1436.
(22) (a) Hughes, D. L.; Leigh, G. J.; Jimenez-Tenorio, M.; Rowley, A. T. J.
Chem. Soc., Dalton Trans. 1993, 75-82. (b) Leigh, G. J.; Jimenez-Tenorio,
M. J. Am. Chem. Soc. 1991, 113, 5862-5863. (c) Hall, D. A.; Leigh, G.
J. J. Chem. Soc., Dalton Trans. 1996, 3539-3541.
(11) Seefeldt, L. C.; Dance, I. G.; Dean, D. R. Biochemistry 2004, 43, 1401-
1409.
(23) (a) George, T. A.; Rose, D. J.; Chang, Y.; Chen, Q.; Zubieta, J. Inorg.
Chem. 1995, 34, 1295-1298. (b) Gilbertson, J. D.; Szymczak, N. K.; Tyler,
D. R. J. Am. Chem. Soc. 2005, 127, 10184-10185.
(12) The role of X may be to reversibly coordinate to iron in the native form
but release low-coordinate iron in reduced forms of the cofactor: Holland,
P. L. Can. J. Chem. 2005, 83, 296-301.
(24) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 10782-10783.
9
J. AM. CHEM. SOC. VOL. 128, NO. 3, 2006 757