C O M M U N I C A T I O N S
Scheme 2
Supporting Information Available: Experimental details and
spectra for all new compounds. This material is available free of charge
References
(1) For leading references to the physiological activity of indole derivatives,
see: (a) Kam, T.-S.; Choo, Y.-M. HelV. Chim. Acta 2004, 87, 991. (b)
Kuethe, J. T.; Wong, A.; Qu, C.; Smitrovich, J.; Davies, I. W.; Hughes,
D. L. J. Org. Chem. 2005, 70, 2555. (c) Van Zandt, M. C.; Jones, M. L.;
Gunn, D. E.; Geraci, L. S.; Jones, J. H.; Sawicki, D. R.; Sredy, J.; Jacot,
J. L.; DiCioccio, A. T.; Petrova, T.; Mitschler, A.; Podjarny, A. D. J.
Med. Chem. 2005, 48, 3141.
(2) For leading references to current applications of the Fischer indole
synthesis, see: Wagaw, S.; Yang, B. Y.; Buchwald, S. L. J. Am. Chem.
Soc. 1999, 121, 10251.
(3) For a review of methods for indole synthesis, see: (a) Gribble, G. W. J.
Chem. Soc., Perkin Trans 1 2000, 1045. For more recent references, see:
(b) Rutherford, J. L.; Rainka, M. P.; Buchwald, S. L. J. Am. Chem. Soc.
2002, 124, 15168. (c) Kamijo, S.; Yamamoto, Y. Angew. Chem., Int. Ed.
2002, 41, 3230. (d) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida, A.
Angew. Chem., Int. Ed. 2002, 41, 4732. (e) Smith, A. B.; Kanoh, N.;
Ishiyama, H.; Minakawa, N.; Rainier, J. D.; Hartz, R. A.; Cho, Y. S.;
Cui, H.; Moser, W. H. J. Am. Chem. Soc. 2003, 125, 8228. (f)
Siebeneicher, H.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 2003,
42, 3042. (g) Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem.
Soc. 2004, 126, 10546. (h) Willis, M. C.; Brace, G. N.; Holmes, I. P.
Angew. Chem., Int. Ed. 2005, 44, 403. (i) Baran, P. S.; Guerrero, C. A.;
Ambhaikar, N. B.; Hafensteiner, B. D. Angew. Chem., Int. Ed. 2005, 44,
606. (j) Herzon, S. B.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 5342.
(k) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 2005, 127, 5776.
(4) There have been scattered reports of the rearrangement of aryl azirines to
indoles: (a) Padwa, A.; Smolanoff, J.; Tremper, A. J. Org. Chem. 1976,
41, 543. (b) Isomura, K.; Ayabe, G.; Hatano, S.; Taniguchi, H. J. Chem.
Soc., Chem. Commun. 1980, 1252. (c) Russell, G. A.; Yao, C.-F.;
Tashtoush, H. I.; Russell, J. E.; Dedolph, D. F. J. Org. Chem. 1991, 56,
663. (d) Inui, H.; Murata, S. J. Am. Chem. Soc. 2005, 127, 2628. (e) For
Rh catalysis, see: Alper, H.; Prickett, J. E. J. Chem. Soc., Chem. Commun.
1976, 483. (f) For Pd catalysis, see: Isomura, K.; Uto, K.; Taniguchi, H.
J. Chem. Soc., Chem. Commun. 1977, 664.
Scheme 3
(5) For the development of the Neber synthesis of azirines, see: (a) Neber,
P. W.; Burgard, A. Justus Liebigs Ann. Chem. 1932, 493, 281. (b) Neber,
P. W.; Huh, G. Justus Liebigs Ann. Chem. 1935, 515, 283.
(6) For recent uses of the Neber reaction, see: (a) Chung, J. Y. L.; Ho, G.-J.;
Chartrain, M.; Roberge, C.; Zhao, D.; Leazer, J.; Farr, R.; Robbins, M.;
Emerson, K.; Mathre, D. J.; McNamara, J. M.; Hughes, D. L.; Grabowski,
E. J. J.; Reider, P. J. Tetrahedron Lett. 1999, 40, 6739. (b) Sakai, T.; Liu,
Y.; Ohta, H.; Korenaga, T.; Ema, T. J. Org. Chem. 2005, 70, 1369. (c)
Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127,
5970.
(7) For alternative procedures for the preparation of azirines from R-aryl
ketones, see: Barcus, R. L.; Hadel, L. M.; Johnston, L. J.; Platz, M. S.;
Savino, T. G.; Scaiano, J. C. J. Am. Chem. Soc. 1986, 108, 3928. In our
hands, these procedures were not as efficient as those that we report here.
(8) The cyclodehydration of the oxime of an R-aryl ketone to give the indole
is a goal that dates back at least 50 years: Loffler, A.; Ginsburg, D. Nature
1953, 172, 820. Our experience with the oximes of R-aryl ketones that
we have studied is that they sometimes sublime on heating under reduced
pressure, but they do not give even traces of indole.
minor isotope effect (e10%, 1H NMR integration) in the formation
of 13 and 14.10
There was still the formal possibility that the nitrene 8 (Scheme
2) was cyclizing much more quickly than it could rotate. To assess
this, we rearranged the azirine derived from 15. In fact, there was
a significant preference for insertion into the more electron-rich
aromatic ring, to give 17, suggesting that the cyclization is
proceeding by way of the π mechanism. The observed preference
for 17 may be of some preparative utility.
(9) Several of the substances reported here were previously described. (a)
5c: Padwa, A.; Rosenthal, R. J.; Dent, W.; Filho, P.; Turro, N. J.; Hrovat,
D. A.; Gould, I. R. J. Org. Chem. 1984, 49, 3174. (b) 6c: Fuerstner, A.;
Jumbam, D. N. Tetrahedron 1992, 48, 5991. (c) 15: Katritzky, A. R.;
Toader, D.; Xie, L. J. Org. Chem. 1996, 61, 7571. (d) 16: Baccolini, G.;
Dalpozzo, R.; Todesco, P. E. J. Chem. Soc., Perkin Trans. 1 1988, 971.
(e) 17: Ikuta, S.; Shiro, M.; Ogawa, K. U.S. Patent 6,861,444 B2, 2005.
(10) For leading references to primary and secondary kinetic isotope effects,
see: Lykakis, I. N.; Orfanopoulos, M. Tetrahedron Lett. 2005, 46, 7835.
The cyclodehydration of the oximes of R-aryl ketones to indoles,
sought for at least 50 years,8 has now been reduced to practice.
We expect that this approach will be particularly useful for the
preparation of indoles having highly substituted benzene rings.
Acknowledgment. We thank Koichi Narasaka and Gordon W.
Gribble for helpful discussions. This work was supported by the
National Institutes of Health (GM 60287).
JA058026J
9
J. AM. CHEM. SOC. VOL. 128, NO. 4, 2006 1059