C O M M U N I C A T I O N S
tallic nucleophiles to form ketones.16,17 After protection of 12 as a
tert-butyldimethylsilyl ether, MeMgBr cleanly converted the mor-
pholine amide 26 to the methyl ketone 27 in high yield without
any evidence for the formation of the tertiary alcohol arising from
overaddition (Scheme 3).
Table 1. Vinylogous Aldol Reactions of Amide-Derived Dienolates
with Hydrocinnamaldehydea
Scheme 3
dienolate
(yield, %)b
yield
c
entry
X
product
%
γ:
Rd
ere
1
2
3
4
5 (77)
6 (89)
7 (80)
8 (78)
NMe2
NEt2
N(CH2)5
9
10
11
12f
69
78
70
80
92:8 91.0:9.0
95:5 84.8:15.2
93:7 96.0:4.0
>99:1 99.0:1.0
These findings represent the first catalytic and enantioselective
vinylogous aldol reactions that employ silyl ketene acetals derived
from R,â-unsaturated amides. Further studies are underway to
extend this method to other morpholine-derived amides and for the
synthesis of complex polyol-containing natural products.
N(CH2CH2)2O
a Reactions employed 1.1 equiv of SiCl4, 1.2 equiv of dienolate, 0.05
equiv of (R,R)-3, 0.1 equiv of i-Pr2NEt, 0.05 equiv of TBAOTf at 0.1 M in
CH2Cl2 at -72 °C for 16 h. b Yields of dienolate synthesis. c Yields after
chromatography. d Determined by 1H NMR analysis. e Determined by CSP-
SFC. f S absolute configuration.13
Acknowledgment. We are grateful to the National Science
Foundation (CHE 0414440) for generous financial support. J.R.H.
acknowledges the University of Illinois for a Seemon H. Pines
Graduate Fellowship.
Table 2. Vinylogous Aldol Reactions of Morpholine-Derived
Dienolates 8 with Aldehydesa
Supporting Information Available: Full characterization of all
dienol ethers and aldol products along with representative procedures
for the addition reactions. This material is available free of charge via
References
entry
R
product
yield, %b
γ
:
Rc
erd
(1) O’Hagan, D. The Polyketide Metabolites, 1st ed.; Ellis Horwood:
Chichester, 1991.
1e
2e
3e
4e
5
PhCH2CH2
CH3(CH2)4
(CH3)2CHCH2
cyclohexyl
C6H5
4-CH3OC6H4
4-CF3C6H4
2-furyl
12
13
14
15
16
17
18
19
20
21
80f
79f
84f
63
95
95
93
94
94
91
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
>99:1
99.0:1.0
94.3:5.7
99.7:0.3
99.4:0.6
97.2:2.8
99.0:1.0
95.4:4.6
93.8:6.2
98.2:1.8
75.5:24.5
(2) (a) Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim,
2004. (b) Carreira, E. M. In Modern Carbonyl Chemistry; Otera, J., Ed.;
Wiley-VCH: Weinheim, 2000; Chapter 8. (c) Carreira, E. M. In
ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer-Verlag, Heidelberg, 1999; Vol. III, Chapter
29. (d) Paterson, I.; Cowden, C. J.; Wallace, D. J. In Modern Carbonyl
Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 9. (e)
Carreira, E. M. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I.,
Ed.; Wiley-VCH: Weinheim, 2000; Chapter 8B2.
6
7
8
9g
10
(E)-PhCHdCH
(E)-PhCHdC(CH3)
(3) (a) Fuson, R. C. Chem. ReV. 1935, 16, 1-27. (b) Krishnamurthy, S. J.
Chem. Educ. 1982, 59, 543-547. (c) Bruneau, P.; Taylor, P. J.; Wilkinson,
A. J. J. Chem. Soc., Perkin Trans. 2 1996, 2263-2269.
(4) (a) Denmark, S. E.; Heemstra, J. R., Jr.; Beutner, G. L. Angew. Chem.,
Int. Ed. 2005, 44, 4682-4698. (b) Kalesse, M. Top. Curr. Chem. 2005,
244, 43-76.
a All reactions employed 1.1 equiv of SiCl4, 1.2 equiv of 8, 0.05 equiv
of (R,R)-3, 0.1 equiv of i-Pr2NEt at 0.1 M in CH2Cl2 at -72 °C. b Yield of
analytically pure material. c Determined by 1H NMR analysis. d Determined
by CSP-SFC. e 0.05 equiv of TBAOTf was added. f Yield after chroma-
tography. g Reaction employed 0.02 equiv of (R,R)-3.
(5) Catalyst (R,R)-3 is commercially available from Obiter Research, LLC.
Contact waboulanger@obiterresearch.com.
(6) (a) Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am.
Chem. Soc. 2005, 127, 3774-3789. (b) Denmark, S. E.; Beutner, G. L. J.
Am. Chem. Soc. 2003, 125, 7800-7801. For a recent application of our
method in total synthesis, see: (c) Aubele, D. L.; Wan, S.; Floreancig, P.
E. Angew. Chem., Int. Ed. 2005, 44, 3485-3488.
catalyst loading of only 2 mol %, the addition of dienolate 8 to
cinnamaldehyde afforded γ-addition product in excellent yield, site-,
and enantioselectivity (entry 9). Unfortunately, R-methyl branched
olefinic aldehydes continue to afford low enantioselectivity (entry
10). Although aliphatic aldehydes require longer reaction times com-
pared to that of conjugated aldehydes, the fact that aliphatic aldehy-
des afford the highest selectivity is particularly noteworthy as these
are typically the least selective substrates in this catalytic system.6
In a preliminary survey of structural generality, we have prepared
ketene acetals 22 and 23 bearing methyl groups on the R and â
atoms of the dienyl unit, respectively.14a These nucleophiles also
reacted with exclusive γ-selectivity to afford the addition products
in high yield and high geometrical14b and excellent enantioselectivity
with hydrocinnamaldehyde (Scheme 2).15
(7) Denmark, S. E.; Heemstra, J. R., Jr. Synlett 2004, 2411-2416.
(8) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. ReV. 2000,
100, 1929-1972.
(9) Myers, A. G.; Widdowson, K. L. J. Am. Chem. Soc. 1990, 112, 9672-
1974.
(10) O’Neill, B. T. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford; 1991; Vol. 1, pp 397-458.
(11) For an example of diastereoselective additions of vinylketene silyl N,O-
acetals to aldehydes, see: Shirokawa, S.; Kamiyama, M.; Nakamura, T.;
Okada, M.; Nakazaki, A.; Hosokawa, S.; Kobayashi, S. J. Am. Chem.
Soc. 2004, 126, 13604-13605.
(12) The addition of tetrabutylammonium trifluoromethanesulfonate and di-
isopropylethylamine to the solution was found to increase the yield of
the aldol adducts. For a discussion of the role of these additives, see ref
6a.
(13) Absolute configuration of 12 was determined by chemical correlation to
(3S)-5-phenylpentane-1,3-diol (O3 then LiAlH4). Nunez, M. T.; Martin,
V. S. J. Org. Chem. 1990, 55, 1928-1932.
(14) (a) N,O-Silyl ketene acetal 22 is formed as a 2.6:1, E/Z mixture, whereas
23 is a 19:1 Z/E mixture. (b) Product 24 formed as a single E isomer
whereas 25 is formed as an 88:12, E/Z mixture.
Scheme 2
(15) Ketene acetals 22 and 23 also reacted with excellent yield and enanti-
oselectivity with benzaldehyde (90-97% yield, 98.4:1.6-98.6:1.4 er) and
cinnamaldehyde (95-97% yield, 98.9:1.1-99.3:0.7 er).
(16) (a) Martin, R.; Romea, P.; Tey, C.; Urpi, F.; Vilarrasa, J. Synlett 1997,
1414-1416. (b) Tosaki, S.; Horiuchi, Y.; Nemoto, T.; Ohshima, T.;
Shibasaki, M. Chem.-Eur. J. 2004, 10, 1527-1544.
(17) Harrington, P. E.; Tius, M. A. Org. Lett. 2000, 2, 2447-2450.
Coincidentally, of all the amides employed, the morpholine
derivative is also the most effective at the acylation of organome-
JA056747C
9
J. AM. CHEM. SOC. VOL. 128, NO. 4, 2006 1039