1412 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 4
Xiao et al.
(9) Ma, Z.; Lee, D. Y. W. Total Synthesis of the Cytotoxic Alkaloid
22-Hydroxyacuminatine. Tetrahedron Lett. 2004, 45, 6721-6723.
(10) Corey, E. J.; Crouse, D. N.; Anderson, J. E. Total Synthesis of Natural
20(S)-Camptothecin. J. Org. Chem. 1975, 40, 2140-2141.
(11) Zalkow, L. H.; Nabors, J. B.; French, K.; Bisarya, S. C. Studies in
Synthesis of CamptothecinsEfficient Synthesis of 2,3-Dihydro-1H-
Pyrrolo 3,4-B Quinoline. J. Chem. Soc. (C) 1971, 3551-3554.
(12) Lieberman, S. C.; Connor, R. p-Nitrobenzaldehyde. Org. Synth.
Collect. Vol. II 1943, 441-443.
(13) Trahanovsky, W. S.; Young, L. B. Controlled Oxidation of Organic
Compounds with Cerium(IV). II. The Oxidation of Toluenes. J. Org.
Chem. 1966, 31, 2033-2035.
(14) Plobeck, N.; Delorme, D.; Wei, Z. Y.; Yang, H.; Zhou, F.; Schwarz,
P.; Gawell, L.; Gagnon, H.; Pelcman, B.; Schmidt, R.; Yue, S. Y.;
Walpole, C.; Brown, W.; Zhou, E.; Labarre, M.; Payza, K.; St-Onge,
S.; Kamassah, A.; Morin, P. E.; Projean, D.; Ducharme, J.; Roberts,
E. New Diarylmethylpiperazines as Potent and Selective Nonpeptidic
Delta Opioid Receptor Agonists with Increased In Vitro Metabolic
Stability. J. Med. Chem. 2000, 43, 3878-3894.
at 50 °C for 24 h. Then acetic acid was removed under reduced
pressure, and the residue was dissolved in CHCl3 (100 mL) and
washed with saturated NaHCO3 (2 × 10 mL), water (2 × 10 mL),
and brine (2 × 10 mL). The organic solution was dried over Na2-
SO4, filtered, concentrated, and the residue was subjected to silica
gel (40 g) flash column chromatography, eluting with CHCl3,
yielding a light yellow solid (18 mg, 18%): mp >262 °C (dec).
1H NMR (300 MHz, CDCl3) δ 8.73 (d, J ) 8.4 Hz, 1 H), 8.36 (s,
1 H), 8.25 (d, J ) 8.4 Hz, 1 H), 8.05 (dd, J ) 8.4, 1.2 Hz, 1 H),
7.98 (s, 1 H), 7.90 (d, J ) 7.5 Hz, 1 H), 7.81 (td, J ) 7.2, 1.2 Hz,
1 H), 7.63 (td, J ) 7.2, 1.2 Hz, 1 H), 7.59 (t, J ) 7.8 Hz, 1 H),
5.37 (s, 2 H); ESIMS m/z (rel intensity) 310 (MH+, 100). Anal.
(C20H11N3O‚0.75H2O) C, H, N.
Molecular Modeling Procedure. The structure of the ternary
complex, containing topoisomerase I, DNA, and topotecan, was
downloaded from the Protein Data Bank (PDB code 1K4T). One
molecule of PEG and the topotecan carboxylate form were deleted.
All of the atoms were then fixed according to the Sybyl atom types.
Hydrogens were added and minimized using MMFF94s force field
and MMFF94 charges. The structure of the 22-hydroxyacuminatine,
constructed in Sybyl and energy minimized with the Tripos force
field and Gasteiger-Hu¨ckel charges, was overlapped with the
structure of topotecan using the A-, B-, C-rings, and the structure
of topotecan was then deleted. The new whole complex was
subsequently subjected to energy minimization using MMFF94s
force field with MMFF94 charges. During the energy minimization,
the structure of the 22-hydroxyacuminatine was allowed to move,
while the structures of the protein, nucleic acids, and the surrounding
water molecules were frozen. The energy minimization was
performed using the Powell method with a 0.05 kcal/mol Å energy
gradient convergence criterion and a distance-dependent dielectric
function.
(15) Hartford, W. H.; Darrin, M. The Chemistry of Chromyl Compounds.
Chem. ReV. 1958, 58, 1-61.
(16) Wheeler, O. H. Etard Reaction. I. Its Scope and Limitation with
Substituted Toluenes. Can. J. Chem. 1958, 36, 667-671.
(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone,
V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.
A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala,
P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.
A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
Gaussian 03, revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.
(18) Ellis, G. P.; Romney-Alexander, T. M. Cyanation of Aromatic
Halides. Chem. ReV. 1987, 87, 779-794.
Acknowledgment. This work was made possible by the
National Institutes of Health (NIH) through support of this work
with Research Grant UO1 CA89566. This research was
conducted in a facility constructed with support from Research
Facilities Improvement Program Grant Number C06-14499 from
the National Center for Research Resources of the National
Institutes of Health.
(19) Cagir, A.; Jones, S. H.; Gao, R.; Eisenhauer, B. M.; Hecht, S. M.
Luotonin A. A Naturally Occurring Human DNA Topoisomerase I
Poison. J. Am. Chem. Soc. 2003, 125, 13628-13629.
(20) Kohlhagen, G.; Paull, K.; Cushman, M.; Nagafuji, P.; Pommier, Y.
Protein-Linked DNA Strand Breaks Induced by NSC 314622, a Novel
Noncamptothecin Topoisomerase I Poison. Mol. Pharmacol. 1998,
54, 50-58.
(21) Antony, S.; Kohlhagen, G.; Agama, K.; Jayaraman, M.; Cao, S.;
Durrani, F. A.; Rustum, Y. M.; Cushman, M.; Pommier, Y. Cellular
Topoisomerase I Inhibition and Antiproliferative Activity by MJ-
III-65 (NSC 706744), an Indenoisoquinoline Topoisomerase I Poison.
Mol. Pharmacol. 2005, 67, 523-530.
(22) Xiao, X.; Miao, Z.-H.; Antony, S.; Pommier, Y.; Cushman, M.
Dihydroindenoisoquinolines Funtion as Prodrugs of Indenoisoquino-
lines. Bioorg. Med. Chem. Lett. 2005, 15, 2795-2798.
(23) Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, A.
B., Jr.; Stewart, L. The Mechanism of Topoisomerase I Poisoning
by a Camptothecin Analogue. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 15387-15392.
(24) Xiao, X.; Cushman, M. An Ab Initio Quantum Mechanics Calculation
that Correlates with Ligand Orientation and DNA Cleavage Site
Selectivity in Camptothecin-DNA-Topoisomerase I Ternary Cleavage
Complexes. J. Am. Chem. Soc. 2005, 127, 9960-9961.
(25) Xiao, X.; Antony, S.; Pommier, Y.; Cushman, M. On the Binding
of Indeno[1,2-c]isoquinolines in the DNA-Topoisomerase I Cleavage
Complex. J. Med. Chem. 2005, 48, 3231-3238.
(26) Cheng, K. J.; Rahier, N. J.; Eisenhauer, B. M.; Gao, R.; Thomas, S.
J.; Hecht, S. M. 14-Azacamptothecin: A Potent Water-Soluble
Topoisomerase I Poison. J. Am. Chem. Soc. 2005, 127, 838-839.
(27) Xiao, X.; Cushman, M. The Effect of E-Ring Modifications in
Camptothecin on Topoisomerase I Inhibition: A Quantum Mechanics
Treatment. J. Org. Chem. 2005, 70, 9584-9587.
Supporting Information Available: Elemental analysis data
and 1H NMR spectra of compounds 2b, 2c, 11, and 39. This
material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Thomas, C. J.; Rahier, N. J.; Hecht, S. M. Camptothecin: Current
Perspectives. Bioorg. Med. Chem. 2004, 12, 1585-1604.
(2) Wang, J. C. Cellular Roles of DNA Topoisomerases: A Molecular
Perspective. Nat. ReV. Mol. Cell Biol. 2002, 3, 430-440.
(3) Garcia-Carbonero, R.; Supko, J. G. Current Perspectives on the
Clinical Experience, Pharmacology, and Continued Development of
the Campothecins. Clin. Cancer Res. 2002, 8, 641-661.
(4) Burke, T. G.; Mi, Z. H. The Structural Basis of Camptothecin
Interactions with Human Serum-AlbuminsImpact on Drug Stability.
J. Med. Chem. 1994, 37, 40-46.
(5) Meng, L. H.; Liao, A. Y.; Pommier, Y. Non-Camptothecin DNA
Topoisomerase I Inhibitors in Cancer Therapy. Curr. Top. Med.
Chem. 2003, 3, 305-320.
(6) Fox, B. M.; Xiao, X.; Antony, S.; Kohlhagen, G.; Pommier, Y.;
Staker, B. L.; Stewart, L.; Cushman, M. Design, Synthesis, and
Biological Evaluation of Cytotoxic 11-Alkenylindenoisoquinoline
Topoisomerase I Inhibitors and Indenoisoquinoline-Camptothecin
Hybrids. J. Med. Chem. 2003, 46, 3275-3282.
(7) Staker, B. L.; Feese, M. D.; Cushman, M.; Pommier, Y.; Zembower,
D.; Stewart, L.; Burgin, A. B. Structures of Three Classes of
Anticancer Agents bound to the Human Topoisomerase I-DNA
Covalent Complex. J. Med. Chem. 2005, 48, 2336-2345.
(8) Lin, L. Z.; Cordell, G. A. Quinoline Alkaloids from Camptotheca
acuminata. Phytochemistry 1989, 28, 1295-1297.
JM051116E