C. Tomasini et al.
FULL PAPER
[5] a) A. N. Shipway, E. Katz, I. Willner, ChemPhysChem 2000, 1,
18–52; b) T. Trindade, P. O’ Brien, N. L. Pickett, Chem. Mater.
2001, 13, 3843–3858; c) J.-T. Lue, J. Phys. Chem. Solids 2001, 62,
1599–1612; d) K. Grieve, P. Mulvaney, F. Grieser, Curr. Opin.
Colloid Interface Sci. 2000, 5, 168–172; e) P. Schwerdtfeger, An-
gew. Chem. Int. Ed. 2003, 42, 1892–1895; Angew. Chem. 2003,
115, 1936–1939.
[6] a) M. Brust, C. J. Kiely, Colloids Surf. A 2002, 202, 175–186; b)
W. P. McConnell, J. P. Novak, L. C. Brousseau III, R. R. Fuierer,
R. C. Tenent, D. L. Feldheim, J. Phys. Chem. B 2000, 104, 8925–
8930; c) R. Gangopadhyay, A. De, Chem. Mater. 2000, 12, 608–
622.
[7] M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293–346.
[8] Metal Nanoparticles: Synthesis Characterization, and Application
(Eds.: D. L. Feldheim, C. A. Foss Jr.), Marcel Dekker, New York,
2002.
[9] E. Katz, I. Willner, Angew. Chem. Int. Ed. 2004, 43, 6042–6108;
Angew. Chem. 2004, 116, 6166.
dition of 0.1 m HCl (1 mL). The solvent was removed under reduced
pressure and the dark residue was dissolved in Milli-Q water (4 mL).
Subsequently, the so-obtained solution was filtered through a 45 µm
microfilter, the nanoparticles precipitated by adding a large amount
of CH3CN and AuNPs4 was finally isolated by centrifugation or fil-
tration. This method was also applied for the preparation of AuNPs1–
3 samples.
X-ray Crystallography: Single-crystal X-ray structure determination
on 2 was carried out at 140(2) K with a Bruker-Nonius X8APEX
diffractometer equipped with Mo-Kα generator, area detector, and
Kryoflex liquid nitrogen cryostat. The structure was solved in space
group P21 and successfully refined on Fo2 by standard methods, using
SIR92[25] and SHELXL-97[26] software included in the WINGX
v2013.3 suite.[27] All non-hydrogen atoms were refined anisotropically,
whereas hydrogen atoms were treated with isotropic displacement (ID)
parameters. Aromatic and methyl hydrogen atoms were added in ide-
alized positions and allowed to ride on the parent carbon atom, with
U(H) = 1.2Ueq(C) and U(H) = 1.5Ueq(C), respectively (torsion angle
was refined for methyl groups using AFIX 137 instruction). The re-
maining hydrogen atoms were refined by forcing ID parameters to be
identical within each methylene group, by restraining C–H distances
to be the same (within 0.015 Å) for all tertiary and all methylene
hydrogen atoms, and by fixing N–H distances to 0.880(15) Å. The
expected absolute configuration at C9, C10, C14, C17, C18, and C22
was confirmed by anomalous dispersion effects; Flack parameter:
0.01(4).
[10] R. Lévy, N. T. K. Thanh, R. C. Doty, I. Hussain, R. J. Nichols,
D. J. Schiffrin, M. Burst, D. G. Fernig, J. Am. Chem. Soc. 2004,
126, 10076–10084.
[11] C. Tomasini, G. Angelici, N. Castellucci, Eur. J. Org. Chem. 2011,
3648–3669.
[12] a) G. Longhi, S. Abbate, F. Lebon, N. Castellucci, P. Sabatino, C.
Tomasini, J. Org. Chem. 2012, 77, 6033–6042; b) G. Angelici, G.
Luppi, B. Kaptein, Q. B. Broxterman, H.-J. Hofmann, C. Tomas-
ini, Eur. J. Org. Chem. 2007, 2713–2721.
[13] C. Tomasini, G. Luppi, M. Monari, J. Am. Chem. Soc. 2006, 128,
2410–2420.
[14] a) L. Belvisi, C. Gennari, A. Mielgo, D. Potenza, C. Scolastico,
Eur. J. Org. Chem. 1999, 389–400; b) J. Yang, S. H. Gellman, J.
Am. Chem. Soc. 1998, 120, 9090–9091; c) I. G. Jones, W. Jones,
M. North, J. Org. Chem. 1998, 63, 1505–1513; d) C. Toniolo,
CRC Crit. Rev. Biochem. 1980, 9, 1–44; e) B. Imperiali, R. A.
Moats, S. L. Fisher, T. J. Prins, J. Am. Chem. Soc. 1992, 114,
3182–3188.
CCDC-1060459 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.
Cell Culture and MTS Assay: HeLa cells were maintained in DMEM
medium (Gibco), supplemented with 10% FCS (Euroclone) and anti-
biotics (penicillin and streptomycin, Invitrogen) at 37 °C in a humidi-
fied atmosphere containing 5% (v/v) CO2; cells were split every 2–3 d.
The day before the experiment, cells were detached by trypsin treat-
ment (Gibco), counted, and seeded onto 96 wells/plate (50ϫ103 cells/
well, Falcon). Different nanoparticles were diluted in culture medium
(up to 200 μg/mL) in DMEM supplemented with FCS and added to
the cells. As a positive control, cells were treated with medium without
stimuli. After 24 h treatment, cells were tested using a CellTiter 96
AQueous One Solution Reagent (Promega). Plates were read with an
ELISA reader (Amersham Biosciences) at 490 nm. The percentage of
viable cells was calculated with respect to data for the control cells.
[15] a) K. D. Kopple, M. Ohnishi, A. Go, Biochemistry 1969, 8, 4087–
4095; b) D. Martin, H. G. Hauthal, in: Dimethyl Sulphoxide, Van
Nostrand-Reinhold, Wokingham, UK, 1975.
[16] L. Milli, M. Larocca, M. Tedesco, N. Castellucci, E. Ghibaudi,
A. Cornia, M. Calvaresi, F. Zerbetto, C. Tomasini, J. Org. Chem.
2014, 79, 5958–5969.
[17] L. Fabris, S. Antonello, L. Armelao, R. L. Donkers, F. Polo, C.
Toniolo, F. Maran, J. Am. Chem. Soc. 2006, 128, 326–336.
[18] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565–565.
[19] M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I.
Vezmar, R. L. Whetten, J. Phys. Chem. B 1997, 101, 3706–3712.
[20] a) H. Alhassen, V. Antony, A. Ghanem, M. M. A. Yajadda, Z. J.
Han, K. Ostrikov, Chirality 2014, 26, 683–691; b) H. Okamoto,
T. Narushima, Y. Nishiyama, K. Imura, Phys. Chem. Chem. Phys.
2015, 17, 6192–6206.
[21] a) C. Toniolo, F. Formaggio, R. W. Woody, Comprehensive Chir-
optical Spectroscopy 2, John Wiley & Sons, 2012, 499–544; b) N. J.
Greenfield, G. D. Fasman, Biochemistry 1969, 8, 4108–4116; c)
M. L. Tiffany, S. Krimm, Biopolymers 1969, 8, 347–359; d) W. C.
Johnson Jr., I. Tinoco Jr., J. Am. Chem. Soc. 1972, 94, 4389–4390.
[22] C. Toniolo, A. Polese, F. Formaggio, M. Crisma, J. Kamphuis, J.
Am. Chem. Soc. 1996, 118, 2744–2745.
Acknowledgments
L. M., N. Z., R. T., G. M., and C. T. thank the Italian Ministero
dell’Istruzione, dell’Università e della Ricerca (MIUR) (program
PRIN 2010NRREPL_009) and the Consorzio Spinner Regione Emi-
lia Romagna for financial support.
[23] I. M. Rio-Echevarria, R. Tavano, V. Causin, E. Papini, F. Mancin,
A. Moretto, J. Am. Chem. Soc. 2011, 133, 8–11.
[24] E. Longo, A. Orlandin, F. Mancin, P. Scrimin, A. Moretto, ACS
Nano 2013, 7, 9933–9939.
[25] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J.
Appl. Crystallogr. 1993, 26, 343–350.
[26] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.
[1] Everett, D. H. Principles of Colloid Science, Royal Society of
Chemistry, Paperbacks, 1988.
[2] S. Knoppe, T. Bürgi, Acc. Chem. Res. 2014, 47, 1318–1326.
[3] a) M. Lahav, A. N. Shipway, I. Willner, J. Chem. Soc. Perkin
Trans. 2 1999, 1925–1931; b) W. Chen, D. Grouquist, J. Roark, J. [27] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849–854.
Nanosci. Nanotechnol. 2002, 2, 47–53.
[4] A. N. Shipway, I. Willner, Chem. Commun. 2001, 2035–2045.
Received: April 29, 2015
Published Online: August 12, 2015
6248
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 6243–6248