Page 19 of 21
1
Journal of the American Chemical Society
(38) Chan, K.-H.; Guan, X.; Lo, V. K.-Y.; Che, C.-M. Elevated
catalytic activity of ruthenium(II)-porphyrin-catalyzed
counterintuitive H-abstraction reactivity of nonheme Fe(IV)O
2
3
4
5
oxidants with alkanes? J. Am. Chem. Soc. 2015, 137, 722-733.
(48) (a) Elschenbroich, C.; Salzer, A. Organometallics: a concise
introduction, 2nd ed.; VCH: Weinheim, Germany, 1992. (b) Cases,
M.; Frenking, G.; Duran, M.; Solà, M. Molecular structure and bond
characterization of the Fischer-type chromium-carbene complexes
(CO)5Cr=C(X)R (X = H, OH, OCH3, NH2, NHCH3 and R = H, CH3,
CH=CH2, Ph, C≡CH). Organometallics 2002, 21, 4182-4191. (c)
Munz, D. Pushing electrons - which carbene ligand for which applica-
tion? Organometallics 2018, 37, 275-289.
carbene/nitrene transfer and insertion reactions with N-heterocyclic
carbene ligands. Angew. Chem., Int. Ed. 2014, 53, 2982-2987.
(39) Xu, X.; Doyle, M. P. The [3+3]-cycloaddition alternative for
heterocycle syntheses: catalytically generated metalloenolcarbenes as
dipolar adducts. Acc. Chem. Res. 2014, 47, 1396-1405.
6
7
8
9
(40) (a) Pilato, R. S.; Williams, G. D.; Geoffroy, G. L.; Rheingold,
A. L. Metathesis-like reactions between the carbene complex
(CO)5W=C(OMe)Ph and organic nitroso reagents. Inorg. Chem. 1988,
27, 3665-3668. (b) Herndon, J. W.; McMullen, L. A. Metathesis and
reduction reactions of nitroso compounds with metal carbenes and
metal carbonyls. J. Organomet. Chem. 1989, 368, 83-101.
(49) Brookhart, M.; Studabaker, W. B.; Humphrey, M. B.; Husk,
G. R. Synthesis and spectral characterization of a series of iron and
ruthenium benzylidene complexes, Cp(CO)(L)M=CH(C6H4R)+ (M =
Fe, Ru; L= CO, PPh3; R = p-H, p-F, p-CH3, p-OCH3). Barriers to aryl
rotation and benzylidene transfer reactions. Organometallics 1989, 8,
132-140.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(41) Peng, W.-J.; Gamble, A. S.; Templeton, J. L.; Brookhart, M.
Reactions of [Cp(CO)2Fe=CHAr]+ (Ar = p-C6H4OMe) with O=N-AR'
(Ar' = C6H5, p-C6H4NMe2) and PhN=NPh. Inorg. Chem. 1990, 29,
463-467.
(50) (a) Huynh, M. H. V.; Meyer, T. J. Proton-coupled electron
transfer. Chem. Rev. 2007, 107, 5004-5064. (b) Warren, J. J.; Tronic,
T. A.; Mayer, J. M. Thermochemistry of proton-coupled electron
transfer reagents and its implications. Chem. Rev. 2010, 110, 6961-
7001. (c) Son, E. J.; Kim, J. H.; Kim, K.; Park, C. B. Quinone and its
derivatives for energy harvesting and storage materials. J. Mater.
Chem. A 2016, 4, 11179-11202. (d) Ando, Y.; Suzuki, K. Photoredox
reactions of quinones. Chem.-Eur. J. 2018, 24, 15955-15964.
(51) (a) Sofen, S. R.; Ware, D. C.; Cooper, S. R.; Raymond, K. N.
Structural, electrochemical, and magnetic properties of a four-
(42) (a) Sander, W.; Kötting, C.; Hübert, R. Super-electrophilic
carbenes and the concept of Philicity. J. Phys. Org. Chem. 2000, 13,
561-568. (b) Sander, W.; Hübert, R.; Kraka, E.; Gräfenstein, J.;
Cremer, D. 4-Oxo-2,3,5,6-tetrafluorocyclohexa-2,5-dienylidene - a
highly electrophilic triplet carbene. Chem.-Eur. J. 2000, 6, 4567-4579.
(43) Andrada, D. M.; Jimenez-Halla, J. O. C.; Solà, M. Mechanism
of the aminolysis of Fischer alkoxy and thiocarbene complexes: a
DFT study. J. Org. Chem. 2010, 75, 5821-5836.
(44) (a) Casey, C. P.; Polichnowski, S. W.; Shusterman, A. J.;
Jones, C. R. Reactions of (CO)5WCHC6H5 with alkenes. J. Am.
Chem. Soc. 1979, 101, 7282-7292. (b) Brookhart, M.; Tucker, J. R.;
Husk, G. R. Synthesis, spectral characterization and alkylidene-
transfer reactions of electrophilic iron carbene complexes
Cp(CO)(L)Fe=CHR+, L = CO, P(C6H5)3; R = CH3, CH2CH3,
CH(CH3)2. J. Am. Chem. Soc. 1983, 105, 258-264. (c) Russell, S. K.;
Hoyt, J. M.; Bart, S. C.; Milsmann, C.; Stieber, S. C. E.; Semproni, S.
P.; DeBeer, S.; Chirik, P. J. Synthesis, electronic structure and
reactivity of bis(imino)pyridine iron carbene complexes: evidence for
a carbene radical. Chem. Sci. 2014, 5, 1168-1174. (d) Liu, J.; Hu, L.;
Wang, L.; Chen, H.; Deng, L. An iron(II) ylide complex as a masked
open-shell iron alkylidene species in its alkylidene-transfer reactions
with alkenes. J. Am. Chem. Soc. 2017, 139, 3876-3888. (e) Tindall, D.
J.; Werlé, C.; Goddard, R.; Philipps, P.; Farès, C.; Fürstner, A.
Structure and reactivity of half-sandwich Rh(+3) and Ir(+3) carbene
complexes. Catalytic metathesis of azobenzene derivatives. J. Am.
Chem. Soc. 2018, 140, 1884-1893.
membered redox series ([Cr(L3)]n,
n = 03) in catechol-
benzoquinone complexes of chromium. Inorg. Chem. 1979, 18, 234-
239. (b) Miller, J. S.; Min, K. S. Oxidation leading to reduction:
redox-induced electron transfer (RIET). Angew. Chem., Int. Ed. 2009,
48, 262-272. (c) Das, A. K.; Sarkar, B.; Fiedler, J.; Zális, S.;
Hartenbach, I.; Strobel, S.; Lahiri, G. K.; Kaim, W. A five-center
redox system: molecular coupling of two noninnocent imino-o-
benzoquinonato-ruthenium functions through a π acceptor bridge. J.
Am. Chem. Soc. 2009, 131, 8895-8902.
(52) Chen, K.; Zhang, S.-Q.; Brandenberg, O. F.; Hong, X.;
Arnold, F. H., Alternate heme ligation steers activity and selectivity in
engineered cytochrome P450-catalyzed carbene-transfer reactions. J.
Am. Chem. Soc. 2018, 140, 16402-16407.
(53) (a) Bím, D.; Maldonado-Domínguez, M.; Rulíšek, L.; Srnec,
M. Beyond the classical thermodynamic contributions to hydrogen
atom abstraction reactivity. Proc. Natl. Acad. Sci. U. S. A. 2018, 115,
E10287-E10294. (b) Goetz, M. K.; Anderson, J. S. Experimental
evidence for pKa-driven asynchronicity in C–H activation by a termi-
nal Co(III)–oxo complex. J. Am. Chem. Soc. 2019, 141, 4051-4062.
( 54 ) Wurche, F.; Sicking, W.; Sustmann, R.; Klärner, F.-G.;
Rüchardt, C. The effect of pressure on hydrogen transfer reactions
with quinones. Chem.-Eur. J. 2004, 10, 2707-2721.
(45) (a) Fedorov, A.; Chen, P. Electronic effects in the reactions of
olefin-coordinated gold carbene complexes. Organometallics 2009,
28, 1278-1281. (b) Fedorov, A.; Chen, P. Mechanistic insights from
the gas-phase reactivity of phosphorus-ylid-supported benzylidene
gold complexes. Organometallics 2010, 29, 2994-3000.
(46) (a) Ho, C.; Leung, W.-H.; Che, C.-M. Kinetics of C–H bond
and alkene oxidation by trans-dioxoruthenium(VI) porphyrins. J.
Chem. Soc., Dalton Trans. 1991, 2933-2939. (b) Nelson, D. W.;
Gypser, A.; Ho, P. T.; Kolb, H. C.; Kondo, T.; Kwong, H.-L.;
McGrath, D. V.; Rubin, A. E.; Norrby, P.-O.; Gable, K. P.; Sharpless,
K. B. Toward an understanding of the high enantioselectivity in the
osmium-catalyzed asymmetric dihydroxylation. 4. Electronic effects
in amine-accelerated osmylations. J. Am. Chem. Soc. 1997, 119,
1840-1858. (c) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.;
Che, C.-M. Aziridination of alkenes and amidation of alkanes by
bis(tosylimido)ruthenium(VI) porphyrins. A mechanistic study. J.
Am. Chem. Soc. 1999, 121, 9120-9132. (d) Hennessy, E. T.; Liu, R.
Y.; Iovan, D. A.; Duncan, R. A.; Betley, T. A. Iron-mediated
intermolecular N-group transfer chemistry with olefinic substrates.
Chem. Sci. 2014, 5, 1526-1532.
(55) (a) Bryant, J. R.; Mayer, J. M. Oxidation of C−H bonds by
[(bpy)2(py)RuIVO]2+ occurs by hydrogen atom abstraction. J. Am.
Chem. Soc. 2003, 125, 10351-10361. (b) Che, C.-M.; Zhang, J.-L.;
Zhang, R.; Huang, J.-S.; Lai, T.-S.; Tsui, W.-M.; Zhou, X.-G.; Zhou,
Z.-Y.; Zhu, N.; Chang, C. K. Hydrocarbon oxidation by β-
halogenated dioxoruthenium(VI) porphyrin complexes: effect of
reduction potential (RuVI/V) and C–H bond-dissociation energy on rate
constants. Chem.-Eur. J. 2005, 11, 7040-7053. (c) Wang, C.;
Shalyaev, K. V.; Bonchio, M.; Carofiglio, T.; Groves, J. T. Fast
catalytic hydroxylation of hydrocarbons with ruthenium porphyrins.
Inorg. Chem. 2006, 45, 4769-4782. (d) Che, C.-M.; Huang, J.-S.
Metalloporphyrin-based oxidation systems: from biomimetic
reactions to application in organic synthesis. Chem. Commun. 2009,
3996-4015.
(56) For examples, see: (a) Mindiola, D. J.; Scott, J. Carbenes and
alkylidenes: spot the difference. Nat. Chem. 2011, 3, 15-17. (b) Cui,
P.; Iluc, V. M. Redox-induced umpolung of transition metal carbenes.
Chem. Sci. 2015, 6, 7343-7354. (c) Feichtner, K.-S.; Gessner, V. H.
Cooperative bond activation reactions with carbene complexes. Chem.
Commun. 2018, 54, 6540-6553. (d) LaPierre, E. A.; Piers, W. E.;
Gendy, C. Redox-state dependent activation of silanes and ammonia
(47) (a) Sastri, C. V.; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson,
T. A.; Ray, K.; Hirao, H.; Shin, W.; Halfen, J. A.; Kim, J.; Que, L.,
Jr.; Shaik, S.; Nam, W. Axial ligand tuning of a nonheme iron(IV)–
oxo unit for hydrogen atom abstraction. Proc. Natl. Acad. Sci. U. S. A.
2007, 104, 19181-19186. (b) Mandal, D.; Ramanan, R.; Usharani, D.;
Janardanan, D.; Wang, B.; Shaik, S. How does tunneling contribute to
ACS Paragon Plus Environment
19