A. J. Phillips et al. / Tetrahedron Letters 47 (2006) 3743–3745
3745
5. Jomon, K.; Kuroda, Y.; Ajisaka, M.; Sakai, H. J.
Antibiot. 1972, 25, 271.
6. Gunasekera, S. P.; Gunasekera, M.; McCarthy, P. J. Org.
Chem. 1991, 56, 4830.
mediate 15 can undergo ring-closing metathesis to yield
17, which does not readily undergo cross metathesis.14
At this juncture transposition of enone was necessary,
and we were attracted to the possibility of employing
the Wharton fragmentation15 of epoxy ketones to effect
this transformation. To this end, epoxidation of enone
12 with hydrogen peroxide under basic conditions
yielded a,b-epoxy ketone 19 in 92% yield and as a single
diastereoisomer (Scheme 4). Despite limited precedent
for the use of the Wharton fragmentation on complex
substrates,16 subjecting an ethanolic solution of 19 to
hydrazine and catalytic acetic acid resulted in hydrazone
formation and in situ Wharton fragmentation to give
the desired allylic alcohol 20. Subsequent Dess–Martin
oxidation yielded enone 21 in 80% yield for the two
steps. Olefination of compound 21 with the Petasis
reagent17 provided 318 in 58% yield, and completed the
synthesis of the carbocyclic core of geodin A.
7. Shigemori, H.; Bae, M. A.; Yazawa, K.; Sasaki, T.;
Kobayashi, J. J. Org. Chem. 1992, 57, 4317.
8. The true biogenetic source of the marine sponge-derived
compounds has not been determined, although it seems
likely that they are bacterial metabolites.
9. Hart, A. C.; Phillips, A. J. J. Am. Chem. Soc. 2006, 128,
1094.
10. For other examples of tandem metathesis sequences of this
general type see: (a) Stille, J. R.; Santarsiero, B. D.;
Grubbs, R. H. J. Org. Chem. 1990, 55, 843; (b) Stragies,
R.; Blechert, S. Synlett 1998, 169; (c) Arjona, O.; Csaky,
A. G.; Medel, R.; Plumet, J. J. Org. Chem. 2002, 67, 1380;
´
(d) Wrobleski, A.; Sahasrabudhe, K.; Aube, J. J. Am.
Chem. Soc. 2002, 124, 9974; (e) Chandler, C. L.; Phillips,
A. J. Org. Lett. 2005, 7, 3493; (f) Pfeiffer, M. W. B.;
Phillips, A. J. J. Am. Chem. Soc. 2005, 127, 5334; (g)
Minger, T. L.; Phillips, A. J. Tetrahedron Lett. 2002, 43,
5357, and references cited therein.
11. Choi, T.-L.; Chatterjee, A. K.; Grubbs, R. H. Angew.
Chem., Int. Ed. 2001, 40, 1277.
12. Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem.
Soc. 1988, 110, 1238.
13. Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron
Lett. 1987, 28, 6141.
14. Resubjecting 17 to the reaction conditions results in less
than 10% conversion to the desired product and other
metathesis catalysts were also ineffective for this cross
metathesis.
In conclusion, we have described a concise 11-step syn-
thesis of the bicyclo[3.3.0]octadiene core of geodin A.
The synthesis features an efficient tandem ring-open-
ing–ring-closing–cross metathesis reaction and the
Wharton fragmentation of an a,b-epoxy ketone as the
key steps. Further progress towards the total synthesis
of geodin A will be reported in due course.
Acknowledgments
15. (a) Wharton, P. S.; Bohlen, D. H. J. Org. Chem. 1961, 26,
3615; (b) Wharton, P. S.; Dunny, S.; Krebs, L. S. J. Org.
Chem. 1964, 29, 958; (c) Stork, G.; Williard, P. J. Am.
Chem. Soc. 1977, 99, 7067.
16. For a rare example see: Liu, J.; Hsung, R. P.; Peters, S.
Org. Lett. 2004, 6, 3989.
Support for this research was provided by the National
Cancer Institute (NCI CA110246). This work was facil-
itated by NMR facilities purchased partly with funds
from an NSF Shared Instrumentation Grant (CHE-
0131003).
17. Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112,
6392.
18. [a]D +84.4 (c 0.05, CHCl3); IR (thin film): 2919.59,
2862.51, 1749.49, 1455.95, 1097.17 cmÀ1
;
1H NMR
References and notes
(500 MHz, CDCl3): d 6.06–6.08 (m, 1H), 5.96–5.97 (m,
1H), 5.39–5.44 (m, 1H), 5.24–5.28 (m, 1H), 4.79 (d, 2H,
J = 66.0 Hz), 3.71–3.80 (m, 2H), 3.66 (s, 3H), 3.03–3.09
(m, 1H), 2.88–2.91 (m, 1H), 2.33–2.37 (m, 2H), 2.27–2.31
(m, 2H), 2.04–2.17 (m, 2H), 1.79–1.85 (m, 1H), 1.30–1.44
(m, 1H), 1.15–1.22 (m, 2H), 1.05–1.07 (m, 3H), 1.05 (s,
18H); 13C NMR (100 MHz, CDCl3): d 158.90, 142.38,
134.24, 131.60, 128.31, 103.08, 94.39, 90.03, 62.58, 57.62,
47.91, 45.64, 40.48, 37.05, 34.13, 29.69, 27.89, 18.04, 11.98;
HRMS (ESI) m/z calcd for C26H44O3SiNa (M++Na)
455.2951, found 455.2943.
1. Capon, R. J.; Skene, C.; Lacey, E.; Gill, J. H.; Wadsworth,
D.; Friedel, T. J. Nat. Prod. 1999, 62, 1256.
2. Kanazawa, S.; Fusetani, N.; Matsunaga, S. Tetrahedron
Lett. 1993, 34, 1065.
3. Bae, M. A.; Yamada, K.; Ijuin, Y.; Tsuji, T.; Yazawa, K.;
Tomono, Y.; Uemura, D. Heterocycl. Commun. 1996, 2,
315.
4. Hashidoko, Y.; Nakayama, T.; Homma, Y.; Tahara, S.
Tetrahedron Lett. 1999, 40, 2957.