I. L. Fedushkin A. G. Morozov, M. Hummert, H. Schumann
FULL PAPER
M.p. 151–153 °C. IR (nujol): ν = 1680 (m), 1641 (m), 1595 (s), 1536
˜
(m), 1462 (m), 1368 (m), 1340 (w), 1325 (w), 1270 (s), 1080 (w), [1] a) H. Schumann, M. Hummert, A. N. Lukoyanov, I. L.
Fedushkin, Organometallics 2005, 24, 3891–3896; b) A. N. Lu-
koyanov, I. L. Fedushkin, M. Hummert, H. Schumann, Russ.
Chem. Bull. 2006, 55, 422–428.
910 (m), 860 (s), 839 (m), 802 (vs), 780 (s), 760 (s), 641 (w), 516
(s), 484 (w) cm–1. C44H61MgN2OSi (686.35): calcd. C 77.00, H 8.96;
found C 76.75, H 8.81.
[2] a) A. N. Lukoyanov, I. L. Fedushkin, M. Hummert, H. Schum-
ann, Z. Anorg. Allg. Chem. 2006, 632, 1471–1476; b) H. Schum-
ann, M. Hummert, A. N. Lukoyanov, I. L. Fedushkin, Chem.
Eur. J. 2007, 13, 4216–4222.
[3] I. L. Fedushkin, A. A. Skatova, M. Hummert, H. Schumann,
Eur. J. Inorg. Chem. 2005, 1601–1608.
[(dpp-bian)(MgOtBu)]2 (5): To
a suspension of 2 (0.62 g,
0.57 mmol) in toluene (50 mL), cooled to ca. –70 °C, was added
tBuOH (0.093 g, 1.13 mmol) by condensation in vacuo. Slow
warming of the reaction mixture to ambient temperature was ac-
companied with liberation of methane and formation of a clear red
solution, which was reduced in volume to ca. 15 mL by evaporation
in vacuo at 80 °C. Crystallisation at ambient temperature gave
[4] a) I. L. Fedushkin, A. A. Skatova, V. K. Cherkasov, V. A. Chu-
dakova, S. Dechert, M. Hummert, H. Schumann, Chem. Eur.
J. 2003, 9, 5778–5783; b) I. L. Fedushkin, A. A. Skatova, A. N.
Lukoyanov, V. A. Chudakova, S. Dechert, M. Hummert, H.
Schumann, Russ. Chem. Bull. Int. Ed. 2004, 53, 2751–2762; c)
I. L. Fedushkin, N. M. Khvoinova, A. Yu. Baurin, G. K. Fu-
kin, V. K. Cherkasov, M. P. Bubnov, Inorg. Chem. 2004, 43,
7807; d) I. L. Fedushkin, A. A. Skatova, S. Y. Ketkov, O. V.
Eremenko, A. V. Piskunov, G. K. Fukin, Angew. Chem. 2007,
119, 4380–4383; Angew. Chem. Int. Ed. 2007, 46, 4302–4305;
e) I. L. Fedushkin, A. N. Lukoyanov, S. Y. Ketkov, M. Hum-
mert, H. Schumann, Chem. Eur. J. 2007, 13, 7050–7056.
[5] a) Z.-X. Wang, C.-Y. Qi, Organometallics 2007, 26, 2243–2251;
b) P. J. Bailey, R. A. Coxall, C. M. Dick, S. Fabre, L. C. Hen-
derson, C. Herber, S. T. Liddle, D. Loronno-Gonzalez, A. Par-
kin, S. Parsons, Chem. Eur. J. 2003, 9, 4820–4828; c) J. L. Ki-
sko, T. Fillebeeen, T. Hascall, G. Parkin, J. Organomet. Chem.
2000, 596, 22–26; d) I. J. Blackmore, V. C. Gibson, P. B. Hitch-
cock, C. W. Rees, D. J. Williams, A. J. P. White, J. Am. Chem.
Soc. 2005, 127, 6012–6020.
[6] M. H. Chisholm, J. C. Gallucci, K. Phomphrai, Inorg. Chem.
2005, 44, 8004–8010.
[7] I. L. Fedushkin, V. A. Chudakova, G. K. Fukin, S. Dechert,
M. Hummert, H. Schumann, Russ. Chem. Bull. 2004, 53, 2744–
2750.
[8] N. J. Hill, G. Reeske, J. A. Moore, A. H. Cowley, Dalton Trans.
2006, 4838–4844.
[9] I. L. Fedushkin, N. M. Khvoinova, A. Yu. Baurin, V. A. Chu-
dakova, A. A. Skatova, V. K. Cherkasov, G. K. Fukin, E. V.
Baranov, Russ. Chem. Bull. 2006, 55, 74–83.
0.51 g (65%) of 5 as deep-red crystals. M.p. Ͼ200 °C. IR (nujol): ν
˜
= 1676 (m), 1658 (w), 1606 (s), 1588 (w), 1575 (m), 1384 (s), 1363
(s), 1313 (s), 1293 (m), 1136 (m), 1057 (s), 856 (s), 692 (s), 666 (s),
632 (m) cm–1. C94H114Mg2N4O2 (1380.51): calcd. C 81.78, H 8.32;
found C 81.15, H 8.03.
X-ray Crystallographic Study of 2–5: The crystal data and details
of the data collections are listed in Table 2. The data were collected
by using a SMART CCD diffractometer (graphite-monochromated
Mo-Kα radiation, ω-scan technique, λ = 0.71073 Å) at 173 K. The
structures were solved by direct methods with the use of SHELXS-
97[10] and were refined on F2 by using all reflections with the
SHELXL-97 program.[11] SADABS[12] was used to perform area-
detector scaling and absorption corrections. The absolute structure
of the noncentrosymmetric space groups was determined by using
SHELXL-97 according to Flack.[13] All non-hydrogen atoms were
refined anisotropically. All hydrogen atoms except those of the
CH3Mg groups of compound 2 were placed in calculated positions
by using a riding model. The positions of the hydrogen atoms of
the CH3Mg groups in 2 were deduced from the electron density
map. The coordinated diethyl ether molecule in 3 was refined iso-
tropically because of its high disorder. CCDC-654640 (for 2),
-654641 (for 3), -654642 (4) and -654643 (for 5) contain the supple-
mentary crystallographic data. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[10] G. M. Sheldrick, SHELXS-97: Program for the Solution of
Crystal Structures, University of Göttingen, 1990.
[11] G. M. Sheldrick, SHELXL-97: Program for the Refinement of
Crystal Structures, University of Göttingen, 1997.
[12] G. M. Sheldrick, SADABS: Program for Empirical Absorption
Correction of Area Detector Data, University of Göttingen,
1996.
[13] a) H. D. Flack, Acta Crystallogr., Sect. A 1983, 39, 876; b) G.
Bernardinelli, H. D. Flack, Acta Crystallogr., Sect. A 1985, 41,
500.
Acknowledgments
This work was supported by the Alexander von Humboldt Founda-
tion (Partnership Project between the IOMC RAS and the Institut
für Chemie der Technischen Universität Berlin), the Russian Foun-
dation for Basic Research (Grant No. 07-03-00545), the Fonds der
Chemischen Industrie and the Deutsche Forschungsgemeinschaft
(H. S.).
Received: August 2, 2007
Published Online: February 18, 2008
1588
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 1584–1588