C O M M U N I C A T I O N S
step (see Supporting Information). Human PPAR binding assays
show that 1a-c and 1f possess moderate binding affinities for some
or all of the three hPPAR subtypes (see Supporting Information).
The mouse PPAR-Gal4 assays show that ligands 1a-c are PPARR
selective (inactive at 5 µM for PPARγ/δ) (Table 1). Two triazole
analogues 2a and 2b (Chart 1) were also prepared by use of click
chemistry.7 Neither shows any significant PPAR activity.
PPAR agonists regulate cardiomyocyte gene expression and
might modulate hypertrophy.8 Therefore, the novel PPAR ligands
were screened for their ability to stimulate cardiomyocyte dif-
ferentiation from murine ES cells. Ligand 1a was the most active
one tested at concentrations between 1.25 to 20 µM between days
2-6, coinciding with the period when mesodermal cells can be
recruited to become cardiomyocytes (Figure 3). Compounds 1d-f
and 2a-b were also active. Notably, the PPARR agonists fenofi-
brate and Wy-14643 were inactive in this assay, as were the PPARγ
agonists rosiglitazone and GW1929 and PPARδ agonist GW501516.
Moreover, of the compounds that induced cardiomyogenesis, only
1a and 1f bound PPARs. Thus, we conclude that the PPAR acti-
vation is not the primary mechanism for cardiomyocyte differentia-
tion.
Figure 2. Modeled binding of 1b to PPARγ.
Table 1. Transactivation of PPARR by Wy-14643 and 1a-c
ligand
EC50
(µ
M)
SEM
Wy-14643
0.47
0.67
1.05
1.65
(0.06
(0.07
(0.08
-
1a
1b
1c
In summary, we have designed and synthesized a series of
isoxazolyl-serine-based PPAR ligands with moderate affinities.
Further structural modification of these lead ligands aimed at
improving upon their binding affinities and the identification of
the primary target for our ligand-induced cardiomyocyte differentia-
tion are underway.
Acknowledgment. We thank Julie Stimmel and Lisa Leesnitzer
for the binding data. M.M. thanks the National Institutes of Health
(Grant R21HL71913) for financial support.
Supporting Information Available: Methods of biological assays,
schemes, and detailed experimental procedures with spectroscopic data.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Willson, T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B. R. J. Med.
Chem. 2000, 43, 527.
(2) Kopelovich, L.; Fay, J. R.; Glazer, R. I.; Crowell, J. A. Mol. Cancer Ther.
2000, 1, 357.
Figure 3. 1a stimulated cardiomyocyte differentiation. Murine CGR8 ES
cells with an RMHC-GFP transgene6 were plated onto gelatin-coated dishes
(3200 cells/cm2) under conditions permissive for differentiation (DMEM
supplemented with 10% FBS, 2 mM glutamine, 1 mM sodium pyruvate,
0.1 mM nonessential amino acids, 0.1 mM âME, 100 units/mL penicillin,
100 µg/mL streptomycin, and 0.25 µg/mL amphotericin). Cells were exposed
to compounds between days 2-6, and eGFP fluorescence was scored at
day 8. Untreated (A) or diluted vehicle (DMSO) (B) stimulated no or
minimal differentiation, whereas addition of 1a consistently stimulated
eGFP-positive cells that beat rhythmically (C). Anti-myosin antibody (MF20
co-immunostaining (red) localized with GFP; blue nuclear counterstain is
DAPI (D).
(3) Shearer, B. G.; Hoekstra, W. J. Curr. Med. Chem. 2003, 10, 267.
(4) (a) Xu, H. E.; Stanley, T. B.; Montana, V. G.; Lambert, M. H.; Shearer,
B. G.; Cobb, J. E.; McKee, D. D.; Galardi, C. M.; Plunket, K. D.; Nolte,
R. T.; Parks, D. J.; Moore, J. T.; Kliewer, S. A.; Willson, T. M.; Stimmel,
J. B. Nature 2002, 415, 813. (b) Xu, H. E.; Lambert, M. H.; Montana, V.
G.; Plunket, K. D.; Moore, L. B.; Collins, J. L.; Oplinger, J. A.; Kliewer,
S. A.; Gampe, R. T., Jr.; McKee, D. D.; Moore, J. T.; Willson, T. M.
Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 13919. (c) Gampe, R. T., Jr.;
Montana, V. G.; Lambert, M. L.; Miller, A. B.; Bledsoe, R. K.; Milburn,
M. V.; Kliewer, S. A.; Willson, T. M.; Xu, H. E. Mol. Cell 2000, 5, 545.
(d) Oberfield, J. L.; Collins, J. L.; Holmes, C. P.; Goreham, D. M.; Cooper,
J. P.; Cobb, J. E.; Lenhard, J. M.; Hull-Ryde, E. A.; Mohr, C. P.;
Blanchard, S. G.; Parks, D. J.; Moore, L. B.; Lehmann, J. M.; Plunket,
K.; Miller, A. B.; Milburn, M. V.; Kliewer, S. A.; Willson, T. M. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 6102. (e) Xu, H. E.; Lambert, M. H.;
Montana, V. G.; Parks, D. J.; Blanchard, S. G.; Brown, P. J.; Sternbach,
D. D.; Lehmann, J. M.; Wisely, G. B.; Willson, T. M.; Kliewer, S. A.;
Milburn, M. V. Mol. Cell 1999, 3, 397. (f) Nolte, R. T.; Wisely, G. B.;
Westin, S.; Cobb, J. E.; Lambert, M. H.; Kurokawa, R.; Rosenfeld, M.
G.; Willson, T. M.; Glass, C. K.; Milburn, M. V. Nature 1998, 395, 137.
(5) Sauerberg, P.; Pettersson, I.; Jeppesen, L.; Bury, P. S.; Mogensen, J. P.;
Wassermann, K.; Brand, C. L.; Sturis, J.; Wo¨ldike, H. F.; Fleckner, J.;
Andersen, A.-S. T.; Mortensen, S. B.; Svensson, L. A.; Rasmussen, H.
B.; Lehmann, S. V.; Polivka, Z.; Sindelar, K.; Panajotova, V.; Ynddal,
L.; Wulff, E. M. J. Med. Chem. 2002, 45, 789.
hydrophobic pocket formed by residues Leu270, Ile281, Phe287,
Ile341, and Met348. The lack of well-defined electron densities
indicates that the binding is not tightly constrained. In our
compounds, linker D (Figure 1) is longer than the linker of the
ligand employed in the crystal structure study.5 Therefore, the
carbazole moiety in our ligands is pushed toward the distal end of
the binding pocket. Moreover, by docking our ligands to PPARR,
we found that the carbazole moiety occupies a different binding
site, one adjacent to the hydrophobic pocket defined for PPARγ,
while the remainder of the ligand maintains the same interactions
with the protein.
(6) Takahashi, T.; Lord, B.; Schulze, P. C.; Fryer, R. M.; Sarang, S. S.;
Gullans, S. R.; Lee, R. T. Circulation 2003, 107, 1912.
(7) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001,
40, 2004.
(8) (a) Hamano, T.; Kobayashi, K.; Sakairi, T.; Hayashi, M.; Mutai, M. J.
Toxicol. Stud. 2001, 26, 275. (b) Gilde, A. J.; Van Bilsen, M. Acta Physiol.
Scand. 2003, 178, 425.
The isoxazolyl-serine-based ligands were readily prepared by use
of an intermolecular nitrile oxide cycloaddition reaction as the key
JA046386L
9
J. AM. CHEM. SOC. VOL. 126, NO. 51, 2004 16715