K. E. Murphy and A. H. Hoveyda, J. Am. Chem. Soc., 2003, 125,
4690; (c) U. Piarulli, P. Daubos, C. Claverie, M. Roux and C. Gennari,
Angew. Chem., Int. Ed., 2003, 42, 234; (d) A. W. van Zijl, L. A. Arnold,
A. J. Minnaard and B. L. Feringa, Adv. Synth. Catal., 2004, 346, 413; (e)
M. A. Kacprzynski and A. H. Hoveyda, J. Am. Chem. Soc., 2004, 126,
10676; (f) A. O. Larsen, W. Leu, C. N. Oberhuber, J. E. Campbell and
A. H. Hoveyda, J. Am. Chem. Soc., 2004, 126, 11130; (g) K. E. Murphy
and A. H. Hoveyda, Org. Lett., 2005, 7, 1255; (h) P. J. Goldsmith,
S. J. Teat and S. Woodward, Angew. Chem., Int. Ed., 2005, 44, 2235; (i)
J. J. Van Veldhuizen, J. E. Campbell, R. E. Giudici and A. H. Hoveyda,
J. Am. Chem. Soc., 2005, 127, 6877.
respectively, the anti and syn--1,2-dialkyl substituted esters 7 and 8
with excellent yields and diastereoselectivities.19 These results
demonstrate the efficiency of this chiral catalyst in the control of
the configuration at the new stereocenter, independent of the
absolute configuration of the chain.17
Financial support from the Dutch Ministry of Economic Affairs
under the EET scheme (EETK-97107 and 99104) and the
European Community’s 6th Framework Programme (Marie
Curie Intraeuropean Fellowship to F. L.) is acknowledged. We
are grateful to Dr H.-U. Blaser (Solvias, Basel) for a gift of
Josiphos ligands.
8 B. L. Feringa, Acc. Chem. Res., 2000, 33, 346.
9 (a) K. Tissot-Croset, D. Polet and A. Alexakis, Angew. Chem., Int. Ed.,
2004, 43, 2426 and references therein; (b) K. Tissot-Croset and
A. Alexakis, Tetrahedron Lett., 2004, 45, 7375.
10 (a) B. L. Feringa, R. Badorrey, D. Pen˜a, S. R. Harutyunyan and
A. J. Minnaard, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5834; (b)
F. Lo´pez, S. R. Harutyunyan, A. J. Minnaard and B. L. Feringa, J. Am.
Chem. Soc., 2004, 126, 12784; (c) F. Lo´pez, S. R. Harutyunyan,
A. Meetsma, A. J. Minnaard and B. L. Feringa, Angew. Chem., Int. Ed.,
2005, 44, 2752; (d) R. Des Mazery, M. Pullez, F. Lo´pez,
S. R. Harutyunyan, A. J. Minnaard and B. L. Feringa, J. Am. Chem.
Soc., 2005, 127, 9966; (e) For a recent highlight, see: S. Woodward,
Angew. Chem., Int. Ed., 2005, 44, 5560.
11 The introduction of a methyl group is the most valuable from a
synthetic point of view. However, very few successful examples have
been reported with either Me2Zn or MeMgX reagents. See ref. 9b and
references cited therein.
12 H.-U. Blaser, W. Brieden, B. Pugin, F. Spindler, M. Studer and
A. Togni, Top. Catal., 2002, 19, 3–16 and references therein.
i
13 Other solvents (Et2O, Pr2O, THF) or leaving groups (LG = OAc,
OCO2Me) tested under these conditions provided lower conversions
and/or selectivities.
14 T. Ireland, G. Grossheimann, C. Wieser-Jeunesse and P. Knochel,
Angew. Chem., Int. Ed., 1999, 38, 3212.
15 The use of other Cu(I) sources (CuTC, Cu(MeCN)4PF6, CuCl),
solvents, or EtMgCl instead of EtMgBr provided the same selectivities.
See ESI for more details.
16 To the best of our knowledge, these are the highest selectivities reported
so far for the substitution with a methyl group in this kind of allylic
bromides.
17 The application of this methodology for the synthesis of relevant natural
products is currently underway.
18 J. Cossy, S. BouzBouz and A. H. Hoveyda, J. Organomet. Chem., 2001,
634, 216 and references therein.
Notes and references
1 S. A. Godleski, in Nucleophiles with Alkyl-Metal Complexes, ed. B. M.
Trost and I. Fleming, Pergamon Press, New York, 1991, Vol. 4,
pp. 585–661.
2 A. Pfaltz and M. Lautens, in Allylic Substitution Reactions, ed. E. N.
Jacobsen, A. Pflatz and H. Yamamoto, Comprehensive Asymmetric
Catalysis I-III; Springer-Verlag, Berlin, Germany, 1999, Vol. II,
pp. 833–884.
3 Mo: (a) O. Belda and C. Moberg, Acc. Chem. Res., 2004, 37, 159; (b)
B. M. Trost, S. Hildbrand and K. Dogra, J. Am. Chem. Soc., 1999, 121,
10416; W: (c) G. C. Lloyd-Jones and A. Pfaltz, Angew. Chem., Int. Ed.
Engl., 1995, 34, 462; Ru: (d) Y. Matsushima, K. Onitsuka, T. Kondo,
T. Mitsudo and S. Takahashi, J. Am. Chem. Soc., 2001, 123, 10405; Rh:
(e) T. Hayashi, A. Okada, T. Suzuka and M. Kawatsura, Org. Lett.,
2003, 5, 1713 and references therein; Ir: (f) G. Lipowsky, N. Miller and
G. Helmchen, Angew. Chem., Int. Ed., 2004, 43, 4595 and references
therein; (g) C. A. Kiener, C. Shu, C. Incarvito and J. F. Hartwig, J. Am.
Chem. Soc., 2003, 125, 14272.
4 (a) For a recent review on Cu-catalysed allylic substitutions, see:
H. Yorimitsu and K. Oshima, Angew. Chem., Int. Ed., 2005, 44, 4435;
(b) For a Ni-catalysed example, see: N. Nomura and T. V. RajanBabu,
Tetrahedron Lett., 1997, 38, 1713; (c) For a Pd-catalysed example, see:
F. Fotiadu, P. Cros, B. Faure and G. Buono, Tetrahedron Lett., 1990,
31, 77.
5 (a) M. van Klaveren, E. S. M. Persson, A. del Villar, D. M. Grove,
J.-E. Ba¨ckvall and G. van Koten, Tetrahedron Lett., 1995, 36, 3059. See
also: (b) G. J. Meuzelaar, A. S. E. Karlsto¨m, M. van Klaveren, E. S.
M. Persson, A. del Villar, G. van Koten and J.-E. Ba¨ckvall,
Tetrahedron, 2000, 56, 2895; (c) A. S. E. Karlsto¨m, F. F. Huerta,
G. J. Meuzelaar and J.-E. Ba¨ckvall, Synlett, 2001, 923.
19 The conjugate addition of EtMgBr to (S)-6 using racemic-1b led to an
84 : 16 mixture of 7 and 8, indicating a strong preference for the
formation of the 1,2-anti product.
6 F. Du¨bner and P. Knochel, Angew. Chem., Int. Ed., 1999, 38, 379.
7 (a) H. Malda, A. W. van Zijl, L. A. Arnold and B. L. Feringa, Org.
Lett., 2001, 3, 1169; (b) C. A. Luchaco-Cullis, H. Mizutani,
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 409–411 | 411