Organic Letters
Letter
Substituted Indoles Mediated by Iodides. Chem. Commun. 2017, 53,
3354−3356. (r) Li, Y.; Peng, J.; Chen, X.; Mo, B.; Li, X.; Sun, P.;
Chen, C. Copper-Catalyzed Synthesis of Multisubstituted Indoles
through Tandem Ullmann-Type C-N Formation and Cross-
Dehydrogenative Coupling Reactions. J. Org. Chem. 2018, 83,
5288−5294. (s) Bodunov, V. A.; Galenko, E. E.; Galenko, A. V.;
Novikov, M.; Khlebnikov, A. F. Synthesis of Substituted Indole-3-
carboxylates by Iron(II)-Catalyzed Domino Isomerization of 3-Alkyl/
aryl-4-aryl-5-methoxyisoxazoles. Synthesis 2018, 50, 2784−2798.
(4) Wei, Y.; Deb, I.; Yoshikai, N. Palladium-Catalyzed Aerobic
Oxidative Cyclization of N-Aryl Imines: Indole Synthesis from
Anilines and Ketones. J. Am. Chem. Soc. 2012, 134, 9098−9101.
Y.; Saio, D.; Hirao, T. Gold Nanoparticles Catalyst with Redox-Active
Poly(aniline sulfonic acid): Application in Aerobic Dehydrogenative
Oxidation of Cyclic Amines in Aqueous Solution. Tetrahedron Lett.
2012, 53, 6144−6147. (c) Wu, J.; Talwar, D.; Johnston, S.; Yan, M.;
Xiao, J. Acceptorless Dehydrogenation of Nitrogen Heterocycles with
a Versatile Iridium Catalyst. Angew. Chem., Int. Ed. 2013, 52, 6983−
6987. (d) Damodara, D.; Arundhathi, R.; Likhar, P. R. Copper
Nanoparticles from Copper Aluminum Hydrotalcite: An Efficient
Catalyst for Acceptor- and Oxidant-Free Dehydrogenation of Amines
and Alcohols. Adv. Synth. Catal. 2014, 356, 189−198. (e) He, K.-H.;
Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Acceptorless
Dehydrogenation of N-Heterocycles by Merging Visible Light
Photoredox Catalysis and Cobalt Catalysis. Angew. Chem., Int. Ed.
2017, 56, 3080−3084. (f) Wu, Y.; Yi, H.; Lei, A. Electrochemical
Acceptorless Dehydrogenation of N-Heterocycles Utilizing TEMPO
as Organo-Electrocatalyst. ACS Catal. 2018, 8, 1192−1196.
(g) Wang, Q.; Chai, H.; Yu, Z. Acceptorless Dehydrogenation of
N-Heterocycles and Secondary Alcohols by Ru(II)-NNC Complexes
Bearing a Pyrazoyl-indolyl-pyridine Ligand. Organometallics 2018, 37,
584−591.
(11) For an intramolecular nucleophilic attack of imines by
phenyldiazoacetates in the presence of Lewis acid catalysts, see:
Zhou, L.; Doyle, M. P. Lewis Acid Catalyzed Indole Synthesis via
Intramolecular Nucleophilic Attack of Phenyldiazoacetates to
Iminium Ions. J. Org. Chem. 2009, 74, 9222−9224.
(12) The isolated yield of the indoline 5a using column
chromatography was about 15−20% due to the rapid decomposition
of 5a. This observation is in agreement with the results of Hodges in
ref 7.
(5) (a) Wurtz, S.; Rakshit, S.; Neumann, J. J.; Droge, T.; Glorius, F.
̈
̈
Palladium-Catalyzed Oxidative Cyclization of N-Aryl Enamines: From
Anilines to Indoles. Angew. Chem., Int. Ed. 2008, 47, 7230−7233.
̈
̈
(b) Neumann, J. J.; Rakshit, S.; Droge, T.; Wurtz, S.; Glorius, F.
Exploring the Oxidative Cyclization of Substituted N-Aryl Enamines:
Pd-Catalyzed Formation of Indoles from Anilines. Chem. - Eur. J.
2011, 17, 7298−7303. For a highlight, see: (c) Shi, Z.; Glorius, F.
Efficient and Versatile Synthesis of Indoles from Enamines and Imines
by Cross-Dehydrogenative Coupling. Angew. Chem., Int. Ed. 2012, 51,
9220−9222. For selected recent examples, see: (d) Nallagonda, R.;
Rehan, M.; Ghorai, P. Synthesis of Functionalized Indoles via
Palladium-Catalyzed Aerobic Oxidative Cycloisomerization of o-
Allylanilines. Org. Lett. 2014, 16, 4786−4789. (e) Liu, W.-Q.; Lei,
T.; Song, Z.-Q.; Yang, X.-L.; Wu, C.-J.; Jiang, X.; Chen, B.; Tung, C.-
H.; Wu, L.-Z. Visible Light Promoted Synthesis of Indoles by Single
Photosensitizer under Aerobic Conditions. Org. Lett. 2017, 19, 3251−
3254. (f) Ning, X.-S.; Wang, M.-M.; Qu, J.-P.; Kang, Y.-B. Synthesis of
Functionalized Indoles via Palladium-Catalyzed Aerobic Cyclo-
isomerization of o-Allylanilines Using Organic Redox Cocatalyst. J.
Org. Chem. 2018, 83, 13523−13529. (g) Ning, X.-S.; Liang, X.; Hu,
K.-F.; Yao, C.-Z.; Qu, J.-P.; Kang, Y.-B. Pd-t-BuONO Cocatalyzed
Aerobic Indole Synthesis. Adv. Synth. Catal. 2018, 360, 1590−1594.
(6) (a) Goriya, Y.; Kim, H. Y.; Oh, K. o-Naphthoquinone-Catalyzed
Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst
Approach. Org. Lett. 2016, 18, 5174−5177. (b) Golime, G.; Bogonda,
G.; Kim, H. Y.; Oh, K. Biomimetic Oxidative Deamination Catalysis
via ortho-Naphthoquinone-Catalyzed Aerobic Oxidation Strategy.
ACS Catal. 2018, 8, 4986−4990.
(13) A benzylic oxidation using KOt-Bu/O2/18-crown-6 in DMF
has been recently reported; see: Wang, H.; Wang, Z.; Huang, H.; Tan,
J.; Xu, K. KOt-Bu-Promoted Oxidation of (Hetero)benzylic Csp3-H
to Ketones with Molecular Oxygen. Org. Lett. 2016, 18, 5680−5683.
(14) (a) Barham, J. P.; Coulthard, G.; Emery, K. J.; Doni, E.;
Cumine, F.; Nocera, G.; John, M. P.; Berlouis, L. E. A.; McGuire, T.;
Tuttle, T.; Murphy, J. A. KOtBu: A Privileged Reagent for Electron
Transfer Reactions? J. Am. Chem. Soc. 2016, 138, 7402−7410.
(b) Zhang, Y.; Wu, X.; Hao, L.; Wong, Z. R.; Lauw, S. J. L.; Yang, S.;
Webster, R. D.; Chi, Y. R. Trimerization of Enones under Air Enabled
by NHC/NaOtBu via a SET Radical Pathway. Org. Chem. Front.
2017, 4, 467−471.
(7) Hodges, J. C.; Wang, W.; Riley, F. Synthesis of a Spirocyclic
Indoline Lactone. J. Org. Chem. 2004, 69, 2504−2508.
(15) (a) Neuvonen, K.; Fulop, F.; Neuvonen, H.; Koch, A.;
̈
̈
Kleinpeter, E.; Pihlaja, K. Comparison of the Electronic Structures of
Imine and Hydrazone Side-Chain Functionalities with the Aid of 13C
and 15N NMR Chemical Shifts and PM3 Calculations. The Influence
of C = N-Substitution on the Sensitivity to Aromatic Substitution. J.
Org. Chem. 2003, 68, 2151−2160. (b) Reich, B. J.; Greenwald, E. E.;
Justice, A. K.; Beckstead, B. T.; Reibenspies, J. H.; North, S. W.;
Miller, S. A. Ene-Diamine versus Imine-amine Isomerization
Preferences. J. Org. Chem. 2005, 70, 8409−8416. (c) Malig, T. C.;
Yu, D.; Hein, J. E. A Revised Mechanism for the Kinugasa Reaction. J.
Am. Chem. Soc. 2018, 140, 9167−9173.
(8) (a) Speckamp, W. N.; Veenstra, S. J.; Dijkink, J.; Fortgens, R. An
Efficient and Stereoselective Synthesis of 2,3-Dihydroindoles via 1,5-
Electrocyclization. J. Am. Chem. Soc. 1981, 103, 4643−4645.
(b) Veenstra, S. J.; Speckamp, W. N. A Stereoselective Synthesis of
Indole Alkaloid Intermediate via N-Acyliminium Cyclization. J. Am.
Chem. Soc. 1981, 103, 4645−4646. (c) Dijkink, J.; Zonjee, J. N.; de
Jong, B. S.; Speckamp, W. N. Indolines through Intramolecular Imine
Cyclizations. Heterocycles 1983, 20, 1255−1258.
(9) An observation of trans-indolines in the intramolecular imine
cyclization in low yields, see: (a) Grigg, R.; Gunaratne, H. Q. N.
Prototropic Generation of Dipoles. A New Synthesis of Indole-3-
carboxylic Acids. J. Chem. Soc., Chem. Commun. 1984, 661−662. A
previous intramolecular imine cyclization approach using 2-
cyanomethylaniline reported the formation of indoles via in situ
aerobic oxidation, see: (b) Kraus, G. A.; Guo, H.; Kumar, G.; Pollock,
G., III; Carruthers, H.; Chaudhary, D. A Flexible Synthesis of Indoles
from ortho-Substituted Anilines: A Direct Synthesis of Isocryptole-
pine. Synthesis 2010, 2010, 1386−1393. However, the spectral data of
the obtained 3-cyano indoles do not match with the authentic
samples; see: (c) Li, B.; Zhang, B.; Zhang, X.; Fan, X. Synthesis of 3-
Cyano-1H-indoles and Their 2’-Deoxyribonucleoside Derivatives
through One-Pot Cascade Reactions. J. Org. Chem. 2016, 81,
9530−9538.
(16) (a) Yelamaggad, C. V.; Tamilenthi, V. P. Synthesis and
Thermal Properties of Liquid Crystal Trimers Comprising Cyanobi-
phenyl and Salicylaldimine Anisometric Segments. Tetrahedron 2009,
65, 6403−6409. (b) Chander, S.; Wang, P.; Ashok, P.; Yang, L.-M.;
Zheng, Y.-T.; Sankaranarayanan, M. Design, Synthesis and Anti-HIV
RT Evaluation of 2-(Benzyl(4-chlorophenyl)amino)-1-(peperazin-1-
yl)ethanone Derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 61−65.
(10) For selected examples, see: (a) Hara, T.; Mori, K.; Mizugaki,
T.; Ebitani, K.; Kaneda, K. Highly Efficient Dehydrogenation of
Indolines to Indoles Using Hydrooxyapatite-Bound Pd Catalyst.
Tetrahedron Lett. 2003, 44, 6207−6210. (b) Amaya, T.; Ito, T.; Inada,
E
Org. Lett. XXXX, XXX, XXX−XXX