Paper
RSC Advances
comparable intake of M1 and M4 (Fig. 4), the antimicrobial PDI
effect of M1 is much lower than that of M4. Except for the
difference between cations and anions, we speculate that the
antimicrobial PDI effect of a PS may also correlate with its
binding site or subcellular localization, which will be more
7 T. Dai, Y. Y. Huang and M. R. Hamblin, Photodiagn.
Photodyn. Ther., 2009, 6, 170–188.
8 H. Nikaido, Science, 1994, 264, 382–388.
9 F. S. Felipe, Y. Y. Huang and M. R. Hamblin, Recent Pat. Anti-
Infect. Drug Discovery, 2013, 8, 108–120.
remarkable when the PS is bound onto an important organelle. 10 W. Fan, P. Huang and X. Chen, Chem. Soc. Rev., 2016, 45,
Obviously, more studies are required in the future.
6488–6519.
11 Y. Shen, A. J. Shuhendler, D. Ye, J. J. Xu and H. Y. Chen,
Chem. Soc. Rev., 2016, 45, 6725–6741.
12 M. R. Hamblin, Curr. Opin. Microbiol., 2016, 33, 67–73.
13 M. Khurana, H. A. Collins, A. Karotki, H. L. Anderson,
D. T. Cramb and B. C. Wilson, Photochem. Photobiol., 2007,
83, 1441–1448.
14 B. W. Henderson, D. A. Bellnier, W. R. Greco, A. Sharma,
R. K. Pandey, L. A. Vaughan and T. J. Dougherty, Cancer
Res. Treat., 1997, 57, 4000–4007.
15 A. V. Kustov, D. V. Belykh, N. L. Smirnova, E. A. Venediktov,
T. V. Kudayarova, S. O. Kruchin, I. S. Khudyaeva and
D. B. Berezin, Dyes Pigm., 2018, 149, 553–559.
16 M. A. Pereira, M. A. F. Faustino, J. P. C. Tome,
M. G. P. M. S. Neves, A. C. Tome, J. A. S. Cavaleiro,
A. Cunha and A. Almeida, Photochem. Photobiol. Sci., 2014,
13, 680–690.
Conclusions
In conclusion, a series of novel water-soluble PSs (M1–M5)
based on 3-cinnamoylcoumarin derivatives were synthesized,
and their properties were investigated. The results show that
with the introduction of two carboxylic acid salts, the photo-
stability of the PSs declined. The cationic PSs M3–M5 exhibited
higher binding/uptake to MRSA, A. baumannii and C. albicans
compared with the clinical drug MB. Additionally, the in vitro
experiments showed that three cationic PSs (M3–M5) had
equivalent antibacterial PDI efficacies against MRSA and A.
baumannii compared with MB. The antifungal PDI efficacies of
M4 and M5 to C. albicans were both much higher than that of
MB, especially for M5. However, anionic PS M1 was only effec-
tive for MRSA. Although the cationic PSs M4 and M5 showed an
excellent antifungal PDI performance, the specic reasons are
still not clear. Further study needs to be carried out to elucidate
the mechanism. This work indicates the potential of coumarin
derivatives in antimicrobial PDI.
17 Q. Chen, J. Li, Y. Wu, F. Shen and M. Yao, RSC Adv., 2013, 3,
13835–13842.
18 G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei,
L. Fantetti, G. Chiti and G. Roncucci, Lasers Surg. Med., 2006,
38, 468–481.
19 D. Sanglard, Curr. Opin. Microbiol., 2002, 5, 379–385.
20 P. Gonzalez-Parraga, J. A. Hernandez and J. C. Arguelles,
Yeast, 2003, 20, 1161–1169.
21 Y. Fang, T. Liu, Q. Zou, Y. Zhao and F. Wu, Sci. Rep., 2016, 6,
28357.
Conflicts of interest
There are no conicts of interest to declare.
22 Y. Fang, T. Liu, Q. Zou, Y. Zhao and F. Wu, RSC Adv., 2015, 5,
56067–56074.
Acknowledgements
The work was supported by the National Natural Science
Foundation of China (No. 61575208).
23 A. C. Engler, N. Wiradharma, Z. Y. Ong, D. J. Coady,
J. L. Hedrick and Y.-Y. Yang, Nano Today, 2012, 7, 201–222.
24 L. Huang, Y. Y. Huang, P. Mroz, G. P. Tegos, T. Zhiyentayev,
S. K. Sharma, Z. Lu, T. Balasubramanian, M. Krayer,
C. Ruzie, E. Yang, H. L. Kee, C. Kirmaier, J. R. Diers,
D. F. Bocian, D. Holten, J. S. Lindsey and M. R. Hamblin,
Antimicrob. Agents Chemother., 2010, 54, 3834–3841.
25 E. R. Kenawy, S. D. Worley and R. Broughton,
Biomacromolecules, 2007, 8, 1359–1384.
Notes and references
1 A. Rodriguez-Rojas, J. Rodriguez-Beltran, A. Couce and
J. Blazquez, Int. J. Med. Microbiol., 2013, 303, 293–297.
2 A. J. Alanis, Arch. Med. Res., 2005, 36, 697–705.
3 R. Laxminarayan, A. Duse, C. Wattal, A. K. M. Zaidi,
H. F. L. Wertheim, N. Sumpradit, E. Vlieghe, G. L. Hara, 26 E. Jameel, T. Umar, J. Kumar and N. Hoda, Chem. Biol. Drug
I. M. Gould, H. Goossens, C. Greko, A. D. So, M. Bigdeli, Des., 2016, 87, 21–38.
G. Tomson, W. Woodhouse, E. Ombaka, A. Q. Peralta, 27 S. Emami and S. Dadashpour, Eur. J. Med. Chem., 2015, 102,
F. N. Qamar, F. Mir, S. Kariuki, Z. A. Bhutta, A. Coates, 611–630.
R. Bergstrom, G. D. Wright, E. D. Brown and O. Cars, 28 F. G. Medina, J. G. Marrero, M. Macias-Alonso,
Lancet Infect. Dis., 2013, 13, 1057–1098.
4 R. Ferraz, V. Teixeira, D. Rodrigues, R. Fernandes,
M. C. Gonzalez, I. Cordova-Guerrero, A. G. Teissier Garcia
and S. Osegueda-Robles, Nat. Prod. Rep., 2015, 32, 1472–
1507.
ˇ
ˆ
C. Prudencio, J. P. Noronha, Z. Petrovski and L. C. Branco,
RSC Adv., 2014, 4, 4301–4307.
29 T. Nasr, S. Bondock and M. Youns, Eur. J. Med. Chem., 2014,
76, 539–548.
5 H. Landecker, Body Soc., 2016, 22, 19–52.
`
´
´
´
6 X. Ragas, D. Sanchez-Garcıa, R. Ruiz-Gonzalez, T. Dai, 30 G. J. Finn, B. S. Creaven and D. A. Egan, Eur. J. Pharm. Sci.,
M. Agut, M. R. Hamblin and S. Nonell, J. Med. Chem., 2010,
53, 7796–7803.
2005, 26, 16–25.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 17073–17078 | 17077