ARTICLES
6. Furukawa, K. et al. Fine tuning of cell signals by glycosylation. J. Biochem. 151,
573–578 (2012).
7. Galan, M. C., Benito-Alifonso, D. & Watt, G. M. Carbohydrate chemistry in drug
discovery. Org. Biomol. Chem. 9, 3598–3610 (2011).
29. Soler, A. et al. Sequential biocatalytic aldol reactions in multistep asymmetric
synthesis: pipecolic acid, piperidine and pyrrolidine (homo)iminocyclitol
derivatives from achiral building blocks. Adv. Synth. Catal. 356,
3007–3024 (2014).
8. Grunwald, P. in Carbohydrate-Modifying Biocatalysts (ed. Grunwald, P.) 29–118
(Pan Stanford, 2012).
9. Hudlicky, T., Entwistle, D. A., Pitzer, K. K. & Thorpe, A. J. Modern methods of
monosaccharide synthesis from non-carbohydrate sources. Chem. Rev. 96,
1195–1220 (1996).
30. Rale, M., Schneider, S., Sprenger, G. A., Samland, A. K. & Fessner, W.-D.
Broadening deoxysugar glycodiversity: natural and engineered transaldolases
unlock a complementary substrate space. Chem. Eur. J. 17, 2623–2632 (2011).
31. Schrödinger Suite 2014-3 (2014).
32. Guaragna, A., D’Alonzo, D., Paolella, C., Napolitano, C. & Palumbo, G. Highly
stereoselective de novo synthesis of L-hexoses. J. Org. Chem. 75,
3558–3568 (2010).
10. Mlynarski, J. & Gut, B. Organocatalytic synthesis of carbohydrates. Chem. Soc.
Rev. 41, 587–596 (2012).
11. Markert, M. & Mahrwald, R. Total syntheses of carbohydrates: organocatalyzed
aldol additions of dihydroxyacetone. Chem. Eur. J. 14, 40–48 (2008).
12. Mahrwald, R. Modern Methods in Stereoselective Aldol Reactions
(Wiley, 2013).
13. Hein, J. E. & Blackmond, D. G. On the origin of single chirality of amino acids
and sugars in biogenesis. Acc. Chem. Res. 45, 2045–2054 (2012).
14. Ruiz-Mirazo, K., Briones, C. & De La Escosura, A. Prebiotic systems chemistry:
new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).
15. Northrup, A. B. & MacMillan, D. W. C. Two-step synthesis of carbohydrates by
selective aldol reactions. Science 305, 1752–1755 (2004).
16. Northrup, A. B., Mangion, I. K., Hettche, F. & MacMillan, D. W. C.
Enantioselective organocatalytic direct aldol reactions of α-oxyaldehydes: step
one in a two-step synthesis of carbohydrates. Angew. Chem. Int. Ed. 43,
2152–2154 (2004).
17. Clapés, P. & Garrabou, X. Current trends in asymmetric synthesis with aldolases.
Adv. Synth. Catal. 353, 2263–2283 (2011).
33. Fessner, W. -D. et al. Enzymes in organic synthesis. Part 1. Diastereoselective,
enzymatic aldol addition with L-rhamnulose- and L-fuculose-1-phosphate
aldolases from E. coli. Angew. Chem. Int. Ed. 30, 555–558 (1991).
34. Bolt, A., Berry, A. & Nelson, A. Directed evolution of aldolases for
exploitation in synthetic organic chemistry. Arch. Biochem. Biophys. 474,
318–330 (2008).
35. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev.
Biochem. Mol. Biol. 39, 99–123 (2004).
36. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine
ribonucleotides in prebiotically plausible conditions. Nature 459,
239–242 (2009).
37. Brewer, A. & Davis, A. P. Chiral encoding may provide a simple solution to the
origin of life. Nature Chem. 6, 569–574 (2014).
38. Müller, M. M., Windsor, M. A., Pomerantz, W. C., Gellman, S. H. & Hilvert, D.
A rationally designed aldolase foldamer. Angew. Chem. Int. Ed. 48,
922–925 (2009).
18. Clapés, P. & Joglar, J. in Modern Methods in Stereoselective Aldol Reactions
(ed. Mahrwald, R.) 475–528 (Wiley, 2013).
19. Wong, C.-H. et al. Recombinant 2-deoxyribose-5-phosphate aldolase in organic
synthesis: use of sequential two-substrate and three-substrate aldol reactions.
J. Am. Chem. Soc. 117, 3333–3339 (1995).
39. Currin, A., Swainston, N., Day, P. J. & Kell, D. B. Synthetic biology for the
directed evolution of protein biocatalysts: navigating sequence space
intelligently. Chem. Soc. Rev. 44, 1172–1239 (2015).
40. Samland, A. K. & Sprenger, G. A. Transaldolase: from biochemistry to human
disease. Int. J. Biochem. Cell Biol. 41, 1482–1494 (2009).
20. Jennewein, S. et al. Directed evolution of an industrial biocatalyst: 2-deoxy-D-
ribose 5-phosphate aldolase. Biotechnol. J. 1, 537–548 (2006).
21. Durrwachter, J. R., Drueckhammer, D. G., Nozaki, K., Sweers, H. M. &
Wong, C.-H. Enzymic aldol condensation/isomerization as a route to unusual
sugar derivatives. J. Am. Chem. Soc. 108, 7812–7818 (1986).
22. Alajarin, R., Garcia-Junceda, E. & Wong, C.-H. A short enzymic synthesis of
L-glucose from dihydroxyacetone phosphate and L-glyceraldehyde. J. Org. Chem.
60, 4294–4295 (1995).
Acknowledgements
This work was supported by Spanish MINECO grants CTQ2012-31605 and CTQ2012-
32436, the Generalitat de Catalunya (2009 SGR 00281), ERA-IB MICINN, PIM2010EEI-
CM1303 Systems Biocatalysis. A.S. acknowledges the CSIC for a JAE predoctoral
contract programme.
23. Samland, A. K., Rale, M., Sprenger, G. A. & Fessner, W.-D. The transaldolase
family: new synthetic opportunities from an ancient enzyme scaffold.
ChemBioChem 12, 1454–1474 (2011).
24. Garrabou, X. et al. Asymmetric self- and cross-aldol reaction of glycolaldehyde
catalyzed by D-fructose-6-phosphate aldolase. Angew. Chem. Int. Ed. 48,
5521–5525 (2009).
25. Gutierrez, M., Parella, T., Joglar, J., Bujons, J. & Clapés, P. Structure-guided
redesign of D-fructose-6-phosphate aldolase from E. coli: remarkable activity and
selectivity towards acceptor substrates by two-point mutation. Chem. Commun.
47, 5762–5764 (2011).
Author contributions
P.C. and X.G. designed the study. A.S. and X.G. performed mutagenesis, library screening,
activity measurements and synthesis of the compounds. J.B. performed the molecular
docking experiments and designed the mutations. T.P. performed and supervised the NMR
experiments and structural assignation of compounds. J.J., J.B. and P.C. supervised the
scientific work. All authors contributed to writing the paper.
26. Szekrenyi, A. et al. Engineering the donor selectivity of D-fructose-6-phosphate Additional information
aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde.
Chem. Eur. J. 20, 12572–12583 (2014).
27. Castillo, J. A. et al. A mutant D-fructose-6-phosphate aldolase (Ala129Ser) with
improved affinity towards dihydroxyacetone for the synthesis of
polyhydroxylated compounds. Adv. Synth. Catal. 352, 1039–1046 (2010).
28. Concia, A. L. et al. D-Fructose-6-phosphate aldolase in organic synthesis: cascade
Supplementary information and chemical compound information are available in the
online version of the paper. Reprints and permissions information is available online at
addressed to P.C.
chemical-enzymatic preparation of sugar-related polyhydroxylated compounds. Competing financial interests
Chem. Eur. J. 15, 3808–3816 (2009).
The authors declare no competing financial interests.
6
© 2015 Macmillan Publishers Limited. All rights reserved