Discovering a catalyst and reaction conditions that enable two
or three distinct processes in one pot is far more complex than
independent reaction optimization. In tandem processes, the
order of reaction can have a profound influence on reaction
outcome, and the byproducts of one transformation can have
beneficial or deleterious effects on another in the cascade.3
Furthermore, the catalyst structure may not be static, but change
over the course of one or more steps, making independent
reaction optimization fruitless.
Heck, Direct Arylation, and Hydrogenation:
Two or Three Sequential Reactions from a Single
Catalyst
Jean-Philippe Leclerc, Mathieu Andre´, and Keith Fagnou*
Center for Catalysis Research and InnoVation, Department of
Chemistry, UniVersity of Ottawa, 10 Marie Curie, Ottawa,
Ontario, Canada K1N 6N5
In recent years, increased attention has been focused on the
use of direct arylation reactions as an alternative to the use of
stoichiometric activating groups in the formation of biaryl
molecules.4 Recent work has enabled these reactions to be
performed with a growing number of heterocyclic arenes,5 and
the efficient use of some simple aromatic coupling partners is
now possible.6,7 While direct arylation reactions have appeared
as the terminating event of a catalytic cascade,8 little is known
about the compatibility of these reactions in the context of
sequential, distinct tandem catalytic processes.9 Being aware
of the vast number of palladium-catalyzed transformations10 and
ReceiVed NoVember 15, 2005
(2) For recent reviews, see: (a) Ikeda, S. Acc. Chem. Res. 2000, 33,
511-519. (b) Poli, G.; Giambastiani, G.; Heumann, A. Tetrahedron 2000,
56, 5959. (c) de Meijere, A.; Brase, S. J. Organomet. Chem. 1999, 576,
88. (d) Tietze, L. F. Chem. ReV. 1996, 96, 115. (e) Parsons, P. J.; Penkett,
C. S.; Shell, A. J. Chem. ReV. 1996, 96, 195. (f) Malacria, M. Chem. ReV.
1996, 96, 289. (g) Heumann, A.; Reglier, M. Tetrahedron 1996, 52, 9289.
(h) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. ReV.
2005, 105, 1001. (i) Foff, D. E.; dos Santos, E. N. Coord. Chem. ReV. 2004,
248, 2365.
Palladium-catalyzed tandem multifunctional reactions leading
to the synthesis of substituted biaryl molecules have been
developed including tandem Heck-direct arylation and
tandem-sequential Heck-direct arylation-hydrogenation.
These reactions occur in good yield and have been employed
in the synthesis of a cytotoxic biaryl compound.
(3) Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 11152.
(4) For recent reviews, see: (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res.
2002, 35, 826. (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002,
102, 1731. (c) Miura, M.; Nomura, M. Top. Curr. Chem. 2002, 219, 211.
(d) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077.
(5) For example, see: (a) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem.
Soc. 2005, 127, 4996. (b) Lewis, J. C.; Wiedemann, S. H.; Bergmann, R.
G.; Ellman, J. A. Org. Lett. 2004, 6, 35. (c) Park, C.-H.; Ryabova, V.;
Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159. (d)
Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2002,
124, 5286. (h) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am.
Chem. Soc. 2003, 125, 1698. (i) McClure, M. S.; Glover, B.; McSorley,
E.; Millar, A.; Osterhout, M. H.; Roschangar, F. Org. Lett. 2001, 3, 1677.
(6) (a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am.
Chem. Soc. 2005, 127, 7330. (b) Daugulis, O.; Zaitsev, V. G. Angew. Chem.,
Int. Ed. 2005, 44, 2. (c) Ackermann, L. Org. Lett. 2005, 14, 3123 and
references therein. (d) Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J.
Am. Chem. Soc. 2005, 127, 5936 and references therein. (e) Wakui, H.;
Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2004,
126, 8658 and references therein. (f) Bedford, R. B.; Coles, S. J.; Hursthouse,
M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112.
(7) For our work in this area, see: (a) Campeau, L.-C.; Parisien, M.;
Leblanc, M.; Fagnou, K. J. Am. Chem. Soc. 2004, 126, 9186. (b) Campeau,
L.-C.; Thansandote, P.; Fagnou, K. Org. Lett. 2005, 7, 1857. (c) Leblanc,
M.; Fagnou, K.; Org. Lett. 2005, 7, 2849. (d) Parisien, M.; Valette, D.;
Fagnou, K. J. Org. Chem. 2005, 70, 7578.
(8) For example, see: (a) Campo, M. A.; Huang, Q.; Yao, T.; Tian, Q.;
Larock, R. C. J. Am. Chem. Soc. 2003, 125, 11506. (b) Ohno, H.; Miyamura,
K.; Mizutani, T.; Kadoh, Y.; Takeoka, Y.; Hamaguchi, H.; Tanaka, T. Chem.
Eur. J. 2005, 11, 3728. (c) Faccini, F.; Motti, E.; Catellani, M. J. Am. Chem.
Soc. 2004, 126, 78. (d) Cuny, G.; Bois-Choussy, M.; Zhu, J. Angew. Chem.,
Int. Ed. 2003, 42, 4774. (e) Mauleon, P.; Nunez, A. A.; Alonzo, I.; Carretero,
J. C. Chem. Eur. J. 2003, 9, 1511. (f) Bressy, C.; Alberico, D.; Lautens,
M. J. Am. Chem. Soc. 2005, 127, 13148.
(9) For a seminal example, see: Bedford, R. B.; Cazin, C. S. J. Chem.
Commun. 2002, 2310.
(10) (a) Tsuji, J. Palladium Reagents and Catalysts: InnoVations in
Organic Synthesis; John Wiley & Sons: New York, 1995. (b) Poli, G.;
Giambastiani, G.; Heumann, A. Tetrahedron 2000, 56, 5959. (c) Tsuji, J.
Transition Metal Reagents and Catalysts: InnoVations in Organic Synthesis;
John Wiley & Sons: New York, 2000.
The desire to improve efficiency and minimize waste has
inspired chemists to develop new catalytic reactions that can
substitute the use of stoichiometric reagents with catalytic
entities. In addition to new catalysts and reactions, novel
strategies have emerged that build on the growing wealth of
catalytic transformations. One such strategy involves the use
of single catalysts for multiple one-pot transformations, or so-
called tandem catalysis.1 In the ideal situation, one catalyst
would be able to perform several mechanistically distinct
processes in the same reaction media with little or no alteration
of the reaction conditions. Significant success has been achieved
under this paradigm as illustrated by the growing number of
processes involving two tandem reactions.2 In contrast, examples
of a single catalyst performing three mechanistically distinct
tandem and/or sequential catalytic reactions remain rare.1b
(1) For recent examples of tandem catalysis, see: (a) Yu, H.-B.; Hu,
Q.-S.; Pu, L. J. Am. Chem. Soc. 2000, 122, 6500. (b) Bielawski, C. W.;
Louie, J.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 12872. (c) Evans,
P. A.; Robinson, J. E. J. Am. Chem. Soc. 2001, 123, 4609. (d) Louie, J.;
Bielawski, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 11312. (e)
Zezschwitz, P.; Petry, F.; de Meijere, A. Chem. Eur. J. 2001, 4035. (f)
Drouin, S. D.; Zamanian, F.; Fogg, D. E. Organometallics 2001, 20, 5495.
(g) Choudary, B. M.; Chowdari, N. S.; Jyothi, K.; Kumar, N. S.; Kantam,
M. L. Chem. Commun. 2002, 586. (h) Teoh, E.; Campi, E. A.; Jackson, W.
R.; Robinson, A. J. Chem. Commun. 2002, 978. (i) van As, B. A. C.;
Buijtenen, J. v.; Heise, A.; Broxterman, Q. B.; Verzijl, G. K. M.; Palmans,
A. R. A.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 9964. (j) Thadani,
A. N.; Rawal, V. H. Org. Lett. 2002, 4, 4317. (k) Thadani, A. N.; Rawal,
V. H. Org. Lett. 2002, 4, 4321. (l) Cheung, W. S.; Patch, R. J.; Player, M.
R. J. Org. Chem. 2005, 70, 3741. (m) Arefalk, A.; Larhed, M.; Hallberg,
A. J. Org. Chem. 2005, 70, 938.
10.1021/jo0523619 CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/20/2006
J. Org. Chem. 2006, 71, 1711-1714
1711