602
S. Tsutsui et al. / Journal of Organometallic Chemistry 691 (2006) 595–603
1H NMR (CDCl3, d) 0.93 (s, 9H), 1.33 (s, 18H), 3.82 (s,
3H), 6.96 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H);
13C NMR (CDCl3, d) 30.33 (CH3), 30.78 (CH3), 31.40
(C), 37.90 (C, overlapping), 55.19 (CH3), 114.23 (CH),
125.60 (C), 132.58 (C), 134.22 (CH), 161.27 (C). Anal.
Calc. for C22H34Cl2GeO: C, 57.69; H, 7.48%. Found: C,
58.08; H, 7.56%.
(c) K. Komatsu, Z. Yoshida, in: A. de Meijere (Ed.), Methods of
Organic Chemistry (Houben-Weyl), vol. E 17d, Thieme, Stuttgart,
1996, pp. 3079–3192;
(d) W. Billups, in: S. Patai, A. Rappoport (Eds.), The Chemistry of
the Cyclopropyl Group, Wiley Interscience, New York, 1987;
(e) J.J. Gajewski, Hydrocarbon Thermal Isomerization, Academic
Press, New York, 1981.
[2] (a) I.M. Bailey, R. Walsh, J. Chem. Soc., Faraday Trans. 74 (1978)
1146;
(b) H. Hopf, H. Priebe, R. Walsh, J. Am. Chem. Soc. 102 (1980)
1210;
(c) H. Hopf, G. Wachholz, R. Walsh, Chem. Ber. 118 (1985) 3579;
(d) H. Hopf, G. Wachholz, R. Walsh, J. Chem. Soc., Perkin Trans.
2 (1986) 1103;
(e) M.A. Kirms, H. Primke, M. Stohlmeier, A. de Meijere, Recl.
Trav. Chim. Pays-Bas 105 (1986) 462;
(f) R. Walsh, S. Untiedt, M. Stohlmeier, A. de Meijere, Chem. Ber.
122 (1989) 637;
(g) R. Walsh, C. Wolf, S. Untiedt, A. de Meijere, J. Chem. Soc.,
Chem. Commun. (1992) 421;
(h) R. Walsh, C. Wolf, S. Untiedt, A. de Meijere, J. Chem. Soc.,
Chem. Commun. (1992) 422;
(i) R. Walsh, S. Untiedt, A. de Meijere, Chem. Ber. 127 (1994) 237;
(j) A. de Meijere, D. Faber, U. Heinecke, R. Walsh, T. Muller, Y.
¨
4.2.5. Reduction of 1a with potassium in the presence of tert-
butyldimethylsilane
A mixture of 1 (51.3 mg, 1.1 · 10ꢀ4 mol), potassium
(47.6 mg, 1.2 mmol), tert-butyldimethylsilane (379 mg,
3.3 mmol), and benzene (10 ml) was stirred for 6 h under
reflux. After removing potassium by filtration, the filtrate
was concentrated under reduced pressure. After adding
hexane, the resulting salt was removed by filtration. After
evaporating the solvent, separation of the residue using
recycling GPC (toluene as an eluent) gave p-anisyl(tert-
butyldimethylsilyl)(1,2,3-tri-tert-butylcycloprop-2-en-1-yl)
germane (4, 8.4 mg, 1.7 · 10ꢀ5 mol, 15%). 4: Colorless oil;
1H NMR (C6D6, d) 0.34 (s, 3H), 0.45 (s, 3H), 0.92 (s,
9H), 1.11 (s, 9H), 1.13 (s, 9H), 1.19 (s, 9H), 3.26 (s,
3H), 4.25 (s, 1H), 6.82 (d, J = 8.4 Hz, 2H), 7.62 (d,
J = 8.4 Hz, 2H); 13C NMR (C6D6,d) ꢀ3.59 (CH3),
ꢀ2.62 (CH3), 19.27 (C), 27.51 (CH3), 30.80 (CH3), 30.93
(CH3), 31.23 (C), 31.71 (CH3), 31.83 (C), 37.86 (C),
44.12 (C), 54.32 (CH3), 113.98 (CH), 130.12 (C), 130.57
(C), 133.63 (C), 138.44 (CH), 159.93 (C); 29Si NMR
(C6D6,d) 0.1; MS (40 eV) m/z (%) 504 (M+, 0.2), 447
(7), 341 (7), 207 (100), 151 (10). Anal. Calc. for
C28H50GeOSi: C, 66.80; H, 10.01%. Found: C, 66.47; H,
9.60%.
Apeloig, Eur. J. Org. Chem. (2001) 663.
[3] (a) M.J. Fink, D.B. Puranik, Organometallics 6 (1987) 1809;
(b) M.J. Fink, D.B. Puranik, M.P. Johnson, J. Am. Chem. Soc. 110
(1988) 1315;
(c) D.B. Puranik, M.J. Fink, J. Am. Chem. Soc. 111 (1989) 5951;
(d) D.B. Puranik, M.P. Johnson, M.J. Fink, Organometallics 8
(1989) 770.
[4] (a) G. Maier, J. Neudert, O. Wolf, D. Pappusch, A. Sekiguchi, M.
Tanaka, T. Matsuo, J. Am. Chem. Soc. 124 (2002) 13819;
(b) G. Maier, A. Kratt, A. Schick, H.P. Reisenauer, F. Barbosa, G.
Gescheidt, Eur. J. Org. Chem. (2000) 1107;
(c) G. Maier, D. Born, I. Bauer, R. Wolf, R. Boese, D. Cremer,
Chem. Ber. 127 (1994) 173.
[5] K. Sakamoto, T. Saeki, H. Sakurai, Chem. Lett. (1993) 1675.
[6] (a) K. Sakamoto, J. Ogasawara, H. Sakurai, M. Kira, J. Am. Chem.
Soc. 119 (1997) 3405;
4.3. Theoretical calculations
(b) T. Veszpremi, M. Takahashi, J. Ogasawara, K. Sakamoto, M.
Kira, J. Am. Chem. Soc. 120 (1998) 2408;
All calculations were carried out using the GAUSSIAN 98
program package [10,11]. The structures of 2, 5, and 6 were
optimized using the B3LYP hybrid functional [24] with the
6-31G(d) basis sets. The 6-311+G(d,p) basis sets were used
for 7–9. For all the compounds, the relative energies were
calculated at the B3LYP/6-311+G(d,p), including the
zero-point energy correction obtained at the B3LYP/6-
31G(d) level. The NBO analysis was performed at the
B3LYP/6-311+G(d,p) level.
(c) T. Veszpremi, M. Takahashi, B. Hajgato, J. Ogasawara, K.
Sakamoto, M. Kira, J. Phys. Chem. A 102 (1998) 10530;
(d) M. Takahashi, K. Sakamoto, M. Kira, Int. J. Quantum Chem. 84
(2001) 198;
(e) K. Sakamoto, J. Ogasawara, Y. Kon, T. Sunagawa, M. Kira,
Angew. Chem., Int. Ed. 41 (2002) 1402;
(f) Y. Kon, J. Ogasawara, K. Sakamoto, C. Kabuto, M. Kira, J.
Am. Chem. Soc. 125 (2003) 9310;
(g) Y. Kon, K. Sakamoto, C. Kabuto, M. Kira, Organometallics 24
(2005) 1407.
[7] (a) S. Matsumoto, S. Tsutsui, E. Kwon, K. Sakamoto, Angew.
Chem. Int. Ed. 43 (2004) 4610;
Appendix A. Supplementary data
(b) S. Tsutsui, E. Kwon, H. Tanaka, S. Matsumoto, K. Sakamoto,
Organometallics 24 (2005) 4629.
[8] S. Tsutsui, H. Tanaka, E. Kwon, S. Matsumoto, K. Sakamoto,
Organometallics 23 (2004) 5659.
[9] H. Tanaka, E. Kwon, S. Tsutsui, S. Matsumoto, K. Sakamoto, Eur.
J. Inorg. Chem. (2005) 1235.
Supplementary data associated with this article can be
[10] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Strat-
mann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N.
Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick,
A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V.
Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
References
[1] Reviews on cyclopropenes, see: (a) K. Komatsu, T. Kitagawa, Chem.
Rev. 103 (2003) 1371;
(b) M.S. Baird, in: A. de Meijere (Ed.), Carbocyclic Three- and Four-
Membered Ring Compounds (Houben-Weyl), vol. E 17d, Thieme,
Stuttgart, 1997, p. 2781;