Journal of the American Chemical Society
Page 8 of 9
coordination. Chem. Soc. Rev. 2020, 49, 3889 (d) Clever, G.
Catalysis of a Unimolecular Transformation: Aza-Cope
Rearrangement within a Self-Assembled Host. Angew. Chem.,
Int. Ed. 2004, 43, 6748.
1
2
3
4
5
6
7
8
H.; Tashiro, S.; Shionoya, M. Inclusion of Anionic Guests
inside a Molecular Cage with Palladium(II) Centers as
Electrostatic Anchors. Angew. Chem. Int. Ed. 2009, 48, 7010.
(e) Liao, P.; Langloss, B. W.; Johnson, A. M.; Knudsen, E. R.;
Tham, F. S.; Julian, R. R.; Hooley, R. J. Two-component
control of guest binding in a self-assembled cage molecule.
Chem. Commun. 2010, 46, 4932. (f) Lewis, J. E. M.; Gavey,
E. L.; Cameron, S. A.; Crowley, J. D. Stimuli-responsive
Pd2L4 metallosupramolecular cages: towards targeted cisplatin
drug delivery. Chem. Sci. 2012, 3, 778. (g) Bloch, W. M.;
Holstein, J. J.; Hiller, W.; Clever, G. H. Morphological
Control of Heteroleptic cis- and trans-Pd2L2L’’2 Cages. Angew.
Chem. Int. Ed. 2017, 56, 8285. (h) Lewis, J. E. M.; Tarzia, A.;
White, A. J. P. Jelfs, K. E. Conformational control of Pd2L4
assemblies with unsymmetrical ligands. Chem. Sci. 2020, 11,
677.
(12) Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective
Michael Reaction of Malonates to Nitroolefins Catalyzed by
Bifunctional Organocatalysts. J. Am. Chem. Soc. 2003, 125,
12672.
(13) Evans, D. A.; Seidel, D. Ni(II)-Bis[(R,R)-N,N’-
dibenzylcyclohexane-1,2-diamine]Br2
Catalyzed
9
Enantioselective Michael Additions of 1,3-Dicarbonyl
Compounds to Conjugated Nitroalkenes. J. Am. Chem. Soc.
2005, 127, 9958.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) Attempts to remove water from the catalyzed reaction
have been hampered by the poor solubility of C1 in anhydrous
dichloromethane.
(15) Guideri, L.; De Sarlo, F.; Machetti, F. Conjugate
Addition versus Cycloaddition/Condensation of Nitro
Compounds in Water: Selectivity, Acid–Base Catalysis, and
Induction Period. Chem. Eur. J. 2013, 19, 665.
(8) (a) Murase, T.; Nishijima, Y.; Fujita, M. Cage-Catalyzed
Knoevenagel Condensation under Neutral Conditions in Water
J. Am. Chem. Soc. 2011,134, 162. (b) Bolliger, J. L.;
Belenguer, A. M.; Nitschke, J. R. Enantiopure water-soluble
[Fe4L6] cages: host-guest chemistry and catalytic activity.
Angew. Chem. Int. Ed. 2013, 52, 7958. (c) Cullen, W.;
Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; M. D. Ward.
Highly efficient catalysis of the Kemp elimination in the
cavity of a cubic coordination cage. Nat. Chem. 2016, 8, 231.
(d) Taylor, C. G. P.; Metherell, A. J.; Argent, S. P.; Ashour, F.
M.; Williams, N. H.; Ward, M. D. Coordination-Cage-
Catalysed Hydrolysis of Organophosphates: Cavity- or
Surface-Based? Chem. Eur. J. 2020, 26, 3065.
(16) Wang, K.; Cai, X.; Yao, W.; Tang, D.; Kataria, R.;
Ashbaugh, H. S.; Byers, L. D.; Gibb, B. C. Electrostatic
Control of Macrocyclization Reactions within Nanospaces. J.
Am. Chem. Soc. 2019, 141, 6740.
(17) Atwood, J. L.; Bott, S.G.; Means, M.; Coleman, A. W.;
Zhang, H.; May, M. T. Synthesis of Salts of the Hydrogen
Dichloride Anion in Aromatic Solvents. 2. Syntheses and
Crystal Structures of [K·18-crown-6][Cl-H-Cl], [Mg·18-
crown-6][Cl-H-Cl]2, [H30·18-crown-6][Cl-H-Cl], and the
Related [H30·18-crown-6][Br-H-Br]. Inorg. Chem. 1990, 29,
467.
(9) (a) Zhao, Y.; Domoto, Y.; Orentas, E.; Beuchat, C.;
Emery, D.; Mareda, J.; Sakai, N.; Matile, S. Catalysis with
Anion- π Interactions. Angew. Chem., Int. Ed. 2013, 52,
9940−9943. (b) Zhao, Y.; Cotelle, Y.; Liu, L.; López-
Andarias, J.; Bornhof, A.-B.; Akamatsu, M.; Sakai, N.; Matile,
S. The Emergence of Anion- π Catalysis. Acc. Chem. Res.
2018, 51, 2255. (c) López-Andarias, J.; Frontera, A.; Matile,
S. Anion−π Catalysis on Fullerenes. J. Am. Chem. Soc. 2017,
139, 13296.
(18) (a) Trogu, E.; De Sarlo, F.; Machetti, F. Michael
Additions versus Cycloaddition Condensations with Ethyl
Nitroacetate and Electron-Deficient Olefins. Chem. Eur. J.
2009, 15, 7940. (b) Martínez, J. I.; Villar, l; Uria, U.; Carrillo,
L.;, Reyes, E.; Vicarioa, J. L. Bifunctional Squaramide
Catalysts with the Same Absolute Chirality for the
Diastereodivergent Access to Densely Functionalised
Cyclohexanes through Enantioselective Domino Reactions.
Synthesis and Mechanistic Studies. Adv. Synth. Catal. 2014,
356, 3627.
(10) (a) Martí-Centelles, V.; Lawrence, A. L.; Lusby, P. J.,
High Activity and Efficient Turnover by a Simple, Self-
Assembled “Artificial Diels–Alderase”. J. Am. Chem. Soc.
2018, 140, 2862. (b) Young, T. A.; Martí-Centelles, V.;
Wang, J.; Lusby, P. J; Duarte, F. Rationalizing the Activity of
an “Artificial Diels-Alderase”: Establishing Efficient and
Accurate Protocols for Calculating Supramolecular Catalysis.
J. Am. Chem. Soc. 2020, 142, 1300. (c) Spicer, R. L.; Stergiou,
A. D.; Young, T. A.; Duarte, F.; Symes, M. D.; Lusby, P. J. J.
Am. Chem. Soc. 2020, 142, 2134. (d) August, D. P.; Nichol, G.
S.; Lusby, P. J. Maximizing Coordination Capsule–Guest
Polar Interactions in Apolar Solvents Reveals Significant
Binding. Angew. Chem. Int. Ed. 2016, 55, 15022. (e) All
association constants measured in dichloromethane.
(19) Mecozzi, S.; Rebek, J. The 55ꢀ% Solution: A Formula for
Molecular Recognition in the Liquid State. Chem. Eur. J.
1998, 4, 1016.
(20) Due to the difficulties in identifying the TS for
intramolecular proton transfer within the cage (because of
greater than 150 atoms), we have modelled the non-bound
reaction (see Supporting Information, section 6). This shows
that a water mediated mechanism is a relatively low energy
process (21.7 kcal mol−1) commensurate with the observed
reaction times.
(11) (a) Rideout, D. C.; Breslow, R. Hydrophobic acceleration
of Diels-Alder reactions. J. Am. Chem. Soc. 1980, 102, 7817.
(b) Kang, J.; Rebek Jr., J. Acceleration of a Diels–Alder
reaction by a self-assembled molecular capsule. Nature 1997,
385, 50. (c) Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-
Alder in Aqueous Molecular Hosts: Unusual Regioselectivity
and Efficient Catalysis. Science 2006, 312, 251. (d) Fiedler,
D.; Bergman, R. G.; Raymond, K. N. Supramolecular
(21) Merget, S.; Catti, L.; Piccini, G. M.; Tiefenbacher K.
Requirements for Terpene Cyclizations inside the
Supramolecular Resorcinarene Capsule: Bound Water and its
Protonation Determine the Catalytic Activity. J. Am. Chem.
Soc. 2020, 142, 4400.
ACS Paragon Plus Environment