Journal of the American Chemical Society
Page 4 of 5
Wiley-Blackwell: Oxford, 2009. (c) Gouverneur, V.; Müller, K. Fluo-
we examined the fluorocyclization of acyclic tri-
substituted allylic amides (Table 3b). Gratifyingly, the
reactions proceeded with high diastereoselectivity, af-
fording products 8f-8h with a fluorinated quaternary
carbon center in up to 99% ee. The reaction was appli-
cable to heteroaromatic compounds (8i-8k). Reduced
diastereoselectivity observed for indole and benzofurane
derivatives 8i and 8j is attributed to higher stability of
the carbocation intermediate. In contrast, thiophene de-
rivative was converted to the cyclized compound 8k
with high diastereo- and almost perfect enantioselectivi-
ty (dr = 1:8.4, 99% ee).
rine in Pharmaceutical and Medicinal Chemistry: From Biophysical
Aspects to Clinical Applications; Imperial College Press: London,
2012. (d) Müller, K.; Faeh, C.; Diederich, F. Science, 2007, 317,
1881-1886.
(2) (a) Liang, T.; Neumann, C. N.; Ritter T. Angew. Chem. Int. Ed.
2013, 52, 8214-8264. (b) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D.
Chem. Rev. 2015, 115, 826-870.
1
2
3
4
5
6
7
8
(3) Wolstenhulme, J. R.; Gouverneur, V. Acc. Chem. Res. 2014, 47,
3560-3570.
(4) (a) Shibata, N.; Suzuki, E.; Asahi, T.; Shiro, M. J. Am. Chem.
Soc. 2001, 123, 7001-7009. (b) Wang, M.; Wang, B. M.; Shi, L.; Tu,
Y. Q.; Fan, C.-A.; Wang, S. H.; Hu, X. D.; Zhang, S. Y. Chem. Com-
mun. 2005, 41, 5580-5582. (c) Ishimaru, T.; Shibata, N.; Horikawa,
T.; Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem. Int.
Ed. 2008, 47, 4157-4161. (d) Wilkinson, S. C.; Lozano, O.; Schuler,
M.; Pacheco, M. C.; Salmon, R., Gouverneur, V. Angew. Chem. Int.
Ed. 2009, 48, 7083-7086. (e) Wolstenhulme, J. R.; Rosenqvist, J.;
Lozano, O.; Ilupeji, J.; Wurz, N.; Engle, K. M.; Pidgeon, G. W.;
Moore, P. R.; Sandford, G.; Gouverneur, V. Angew. Chem. Int. Ed.
2013, 52, 9796-9800.
(5) (a) Kong, K.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem.
Int. Ed. 2013, 52, 2469-2473. (b) Molnár, I. G.; Gilmour, R. J. Am.
Chem. Soc. 2016, 138, 5004-5007. (c) Banik, S. M.; Medley, J. W.;
Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000-5003. (d) Woerly,
E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138,
13858-13861.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, we have developed a new dianionic
phase-transfer catalyst for highly enantioselective 6-
endo fluorocyclization of allylic amides with Selectfluor.
The catalyst was able to control the fluorine-delivery
step with high enantioselectivity in all the examples re-
ported herein, indicating that the designed catalyst
would be applicable to other types of fluoro-
functionalization. Since the obtained compounds are
highly functionalized, this method would be useful in
synthesizing a variety of fluorinated compounds. Further
investigations to expand the scope of the reaction and to
elucidate the reaction mechanism are underway in our
laboratory.
(6) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D.
Science 2011, 334, 1681-1684.
(7) (a) Phipps, R. J.; Hiramatsu, K.; Toste, F. D. J. Am. Chem. Soc.
2012, 134, 8376-8379. (b) Phipps, R. J.; Toste, F. D. J. Am. Chem.
Soc. 2013, 135, 1268-1271. (c) Wu, J.; Wang, Y.-M.; Drljevic, A.;
Rauniyar, V.; Phipps, R. J.; Toste, F. D. Proc. Natl. Acad. Sci. U.S.A.
2013, 110, 13729-13733. (d) Zi, W.; Wang, Y.-M.; Toste, F. D. J.
Am. Chem. Soc. 2014, 136, 12864-12867. (e) Romanov-Michailidis,
F., Guénée, L.; Alexakis, A. Angew. Chem. Int. Ed. 2013, 52, 9266-
9270. (f) Liang, X.-W.; Liu, C.; Zhang, W.; You, S.-L. Chem. Com-
mun. 2017, 53, 5531-5534.
!33/#)!4%$ #/.4%.4
Supporting Information. Experimental procedures and
spectroscopic data. This material is available free of charge
(8) Egami, H.; Asada, J.; Sato, K.; Hashizume, D.; Kawato, Y.;
Hamashima, Y. J. Am. Chem. Soc. 2015, 137, 10132-10135.
(9) Toste proposed a 1:2 assembly between Selectfluor and chiral
phosphate catalysts. See references 6 and 7.
(10) (a) Kawato, Y.; Kubota, A.; Ono, H.; Egami, H.; Hamashima,
Y. Org. Lett. 2015, 17, 1244-1247. (b) Kawato, Y.; Ono, H.; Kubota,
A.; Nagao, Y.; Morita, N.; Egami, H.; Hamashima, Y. Chem. Eur. J.
2016, 22, 2127-2133. (c) Nagao, Y.; Hisanaga, T.; Egami, H.; Kawato,
Y.; Hamashima, Y. Chem. Eur. J. 2017, 23, 16758-16762.
(11) Shunatona, H. P.; Früh, N.; Wang, Y.-M.; Rauniyar, V.; Toste,
F. D. Angew. Chem. Int. Ed. 2013, 52, 7724-7727.
(12) Egami, H.; Sato, K.; Asada, J.; Kawato, Y.; Hamashima, Y.
Tetrahedron 2015, 71, 6284-6388.
(13) See Supporting Information.
(14) The ee values between the diastereomers are generally differ-
ent, probably because a kinetic resolution of the fluorocarbenium ion
intermediate occurs during the cyclization step.
(15) (a) Stavber, S.; Sotler-Pecan, T.; Zupan, M. Bull. Chem. Soc. J.
1996, 69, 169-175. (b) Stavber, S.; Sotler-Pecan, T.; Zupan, M. Tet-
rahedron 2000, 56, 1929-1936. (c) Zupan, M.; Skulj, P.; Stavber, S.
Tetrahedron 2001, 57, 10027-10031. (d) Olah, G. A.; Prakash, G. K.
S.; Rasul, G. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 8427-8430.
(16) (a) Mühlthau, F.; Schuster, O.; Bach, T. J. Am. Chem. Soc.
2005, 127, 9348-9349. (b) Sparr, C.; Gilmour, R. Angew. Chem. Int.
Ed. 2010, 49, 6520-6523.
!54(/2 ).&/2-!4)/.
#Ø≤≤•≥∞ØÆ§©Æß !µ¥®Ø≤
.Ø¥•≥
The authors declare no competing financial interest.
!#+./7,%$'-%.4
This work was supported by a Grant-in-Aid for Scientific
Research (B) (No. 16H05077) from JSPS, Basis for Sup-
porting Innovative Drug Discovering and Life Science Re-
search (BINDS) from AMED, the Naito Foundation (Ja-
pan), The Research Foundation for Pharmaceutical Scienc-
es, and The FUGAKU Trust for Medicinal Research. We
thank Prof. Kenji Watanabe and Dr. Yuta Tsunematsu of
University of Shizuoka for their kind help for mass spec-
trometry analysis.
2%&%2%.#%3
(1) (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Re-
activity, Applications, 2nd ed.; Wiley-VCH: Weinheim, 2013. (b)
Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology;
ACS Paragon Plus Environment