Communications
8: A mixture of 3,6-bis(3,3-dimethylbut-1-ynyl)benzene-1,2-di-
amine (1.70 g, 6.33 mmol), molecular sieves (1.0 g),and 1,2-diphenyl-
ethane-1,2-dione (2.00 g, 9.51 mmol) in dry toluene (50 mL) was
heated at reflux for 18 h. Workup and column chromatography (silica
gel, 1:1 hexane/CH2Cl2) afforded 8 (1.77 g, 63%); m.p.: 232–2348C;
IR (KBr): n = 3055, 2966, 2922, 2895, 2864, 2216, 1560, 1466, 1337,
1242, 1097, 841, 700 cmÀ1; 1H NMR (400 MHz, CDCl3): d = 7.75–7.72
(m, 6H), 7.38–7.31 (m, 6H), 1.45 ppm (s, 18H); 13C{1H} NMR
(100 MHz, CDCl3): d = 152.27, 140.93, 138.94, 132.40, 130.21,
129.04, 128.03, 123.33, 106.84, 75.98, 31.02, 28.52 ppm; HR-MS
(70 eV): m/z calcd for C32H30N2 [M+]: 442.24090; found: 442.24153.
13.0 (Æ 0.3) and logb4 = 22.1 (Æ 0.3). Not unexpectedly, the
presence of the phenyl groups increases the interaction with
the silver cations and leads to this somewhat exotic complex-
ation behavior.
The underlying structural principle of alkyne-framed N-
heterocycles will be exploited in the future to construct a
more general class of rigid receptors 7 by coupling differ-
entiated functional alkynes to 6. Those starting alkynes would
carry auxiliary binding sites and/or modulate the electronic
properties of the system to investigate the interaction of these
ligands with metal cations in water and in organic solvents.[18]
In conclusion, we have described a facile synthetic
approach that yields peralkynylated quinoxalines and phena-
zines. Both 4 and 7, which are the first reported peralkyny-
lated heteroacenes, show attractive and quite selective metal-
binding properties that will be harnessed in the future.
Derivatives of this class of fluorescent molecules might find
use as organic n-type semiconductors.
Received: June 15, 2005
Revised: October 19, 2005
Published online: December 19, 2005
Keywords: alkynes · cations · fused-ring systems ·
.
nitrogen heterocycles
[1]a) R. Diercks, J. C. Armstrong, R. Boese, K. P. C. Vollhardt,
Angew. Chem. 1986, 98, 270 – 271; Angew. Chem. Int. Ed. Engl.
1986, 25, 268 – 269; b) R. Boese, J. R. Green, J. Mittendorf, D. L.
Mohler, K. P. C. Vollhardt, Angew. Chem. 1992, 104, 1643 – 1645;
Angew. Chem. Int. Ed. Engl. 1992, 31, 1643 – 1645; c) T. X.
Neenan, G. M. Whitesides, J. Org. Chem. 1988, 53, 2489; d) Y.
Tobe, K. Kubota, K. Naemura, J. Org. Chem. 1997, 62, 3430 –
3431; e) J. D. Tovar, N. Jux, T. Jarrosson, S. I. Khan, Y. Rubin, J.
Org. Chem. 1997, 62, 3432 – 3433.
Experimental Section
2: Dry THF (150 mL) was added to a flame-dried 250-mL Schlenk
flask charged with 1, then LiAlH4 (4 equiv) was added to the mixture
under a stream of nitrogen over a period of 30 min, and stirring was
continued for 4 h. Analytically pure 2 was obtained after aqueous
workup.
2a: Prepared from 1a (1.00 g, 2.18 mmol). Red solid (0.760 g,
1
81%); m.p.: 1678C (decomp); H NMR (400 MHz, CDCl3): d = 3.34
[2]H. W. Marx, F. Moulines, T. Wagner, D. Astruc, Angew. Chem.
1996, 108, 1842 – 1845; Angew. Chem. Int. Ed. Engl. 1996, 35,
1701 – 1704.
(bs, 4H), 1.42 (s, 18H), 1.40 ppm (s, 18H); 13C{1H} NMR (100 MHz,
CDCl3): d = 136.89, 119.38, 112.01, 108.50, 102.97, 77.37, 75.46, 31.25,
31.02, 28.76, 28.52 ppm.
[3]a) H. Hopf, M. Kreutzer, P. G. Jones, Chem. Ber. 1991, 124,
1471 – 1475; b) Y. Rubin, C. B. Knobler, F. Diederich, Angew.
Chem. 1991, 103, 708 – 710; Angew. Chem. Int. Ed. Engl. 1991,
30, 698 – 700; c) F. Diederich, Y. Rubin, Angew. Chem. 1992, 104,
1123 – 1145; Angew. Chem. Int. Ed. Engl. 1992, 31, 1101 – 1123.
[4]a) J. Anthony, C. B. Knobler, F. Diederich, Angew. Chem. 1993,
105, 437 – 440; Angew. Chem. Int. Ed. Engl. 1993, 32, 406 – 409;
b) G. J. Palmer, S. R. Parkin, J. E. Anthony, Angew. Chem. 2001,
113, 2577 – 2580; Angew. Chem. Int. Ed. 2001, 40, 2509 – 2512.
[5]a) N. Jux, K. Holczer, Y. Rubin, Angew. Chem. 1996, 108, 2031 –
2034; Angew. Chem. Int. Ed. Engl. 1996, 35, 2509 – 2512;
b) U. H. F. Bunz, V. Enkelmann, Organometallics 1994, 13,
3823 – 3833; c) W. Steffen, M. Laskoski, J. G. M. Morton,
U. H. F. Bunz, J. Organomet. Chem. 2004, 689, 4345 – 4356;
d) D. M. Zhang, C. A. Tessier, W. J. Youngs, Chem. Mater. 1999,
11, 3050 – 3057.
[6]a) M. M. Haley, S. C. Brand, J. J. Pak, Angew. Chem. 1997, 109,
863 – 866; Angew. Chem. Int. Ed. Engl. 1997, 36, 836 – 838;
b) W. B. Wan, S. C. Brand, J. J. Pak, M. M. Haley, Chem. Eur. J.
2000, 6, 2044 – 2055; c) M. M. Haley, J. J. Pak, S. C. Brand, Top.
Curr. Chem. 1999, 201, 81 – 130.
[7]a) U. H. F. Bunz, V. Enkelmann, Angew. Chem. 1993, 105, 1712 –
1714; Angew. Chem. Int. Ed. Engl. 1993, 32, 1653 – 1655;
b) U. H. F. Bunz, G. Roidl, M. Altmann, V. Enkelmann, K. D.
Shimizu, J. Am. Chem. Soc. 1999, 121, 10719 – 10726; c) M.
Laskoski, W. Steffen, J. G. M. Morton, M. D. Smith, U. H. F.
Bunz, Angew. Chem. 2002, 114, 2484 – 2488; Angew. Chem. Int.
Ed. 2002, 41, 2378 – 2382; d) U. H. F. Bunz, J. Organomet. Chem.
2003, 683, 269 – 287.
2c: Prepared from 1c (1.00 g, 1.16 mmol). Red solid (0.706 g,
1
73%); m.p.: 1858C (decomp); H NMR (400 MHz, CDCl3): d = 3.22
(bs, 4H), 1.17–1.13 ppm (m, 84H); 13C{1H} NMR (100 MHz, CDCl3):
d = 136.45, 118.97, 112.69, 104.47, 102.25, 101.48, 96.35, 19.14, 12.16,
11.42 ppm.
4: Molecular sieves, 2a (0.204 g, 0.476 mmol),
3 (0.209 g,
0.500 mmol), and toluene (10 mL) were heated at 808C for 4 h.
Removal of the solvent and chromatography of the residue (3:1
hexanes/CH2Cl2) furnished 4 (0.315 g, 55%); m.p.: 194–1968C;
1H NMR (400 MHz, CDCl3): d = 1.43 (s, 18H), 1.37 (s, 18H)
1.18 ppm (s, 42H); 13C{1H} NMR (100 MHz, CDCl3): d = 141.53,
140.38, 130.29, 126.08, 112.48, 108.94, 104.26, 99.52, 78.46, 75.23, 33.58,
29.16, 18.75, 11.89 ppm; IR (KBr): n = 2966, 2945, 2866, 2222, 1539,
1462, 1411, 1313 cmÀ1; MS (70 eV): m/z (%): 811 (100) [M+], 726 (60),
645 (5); HR-MS: m/z calcd for C54H78N2Si2: 810.57036; found:
810.56716.
7: 2a (0.274 g, 0.639 mmol), 5 (0.273 g, 0.645 mmol), ethanol
(10 mL), and a drop of H2SO4 were heated at reflux for 14 h.
Filtration followed by crystallization from CH3OH/CH2Cl2 yielded 6
(0.250 g, 48%); 1H NMR (400 MHz, CDCl3): d = 1.41 (s, 18H),
1.37 ppm (s, 18H); 13C{1H} NMR (100 MHz,CDCl3): d = 143.87,
139.54, 132.67, 131.29, 127.99, 126.09, 113.08, 112.62, 79.46, 75.09,
32.63, 31.15, 28.35, 28.00 ppm. Triethylamine (7 mL), 6 (0.424 g,
0.519 mmol), [(PPh3)2PdCl2](5 mol%), CuI (5 mol%), and 3,3-
dimethylbutyne (5 equiv) were stirred at 1208C for 18 h in a sealed
flask. Aqueous workup and column chromatography (4:1 hexanes/
CH2Cl2) furnished 7 (0.196 g, 46%); m.p.: 2488C (decomp.); 1H NMR
(400 MHz, CDCl3): d = 1.46 (s, 36H), 1.32 ppm (s, 36H);
13C{1H} NMR (100 MHz, CDCl3): d = 141.82, 130.27, 124.71, 111.36,
110.00, 77.46, 75.92, 31.92, 30.84, 28.56, 28.31 ppm; IR (KBr): n =
2966, 2923, 2862, 2214, 1728, 1712, 1695, 1548, 1452, 1440, 1390, 1361,
1261 cmÀ1; MS (70 eV): m/z (%): 820 (100) [M+]; HR-MS: m/z calcd
for C60H72N2: 820.56955; found: 820.56726.
[8]a) R. Faust, C. Weber, J. Org. Chem. 1999, 64, 2571 – 2573; b) F.
Mitzel, S. Fitzgerald, A. Beeby, R. Faust, Chem. Commun. 2001,
2596 – 2597; c) F. Mitzel, S. Fitzgerald, A. Beeby, R. Faust, Chem.
Eur. J. 2003, 9, 1233 – 1241; d) S. Ott, R. Faust, Synlett 2004,
1509 – 1512.
664
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 661 –665