10.1002/anie.201910901
Angewandte Chemie International Edition
Research Article
2002, 419, 708–712. (b) J. S. Sinninghe Damste, W. I. C. Rijpstra, J. A. J.
Geenevasen, M. Strous, M. S. M. Jetten, FEBS J. 2005, 272, 4270-4283.
2 For review on synthesis of ladderane molecules, see: (a) H. Hopf, Angew.
Chem. Int. Ed. 2003, 42, 2822-2825; Angew. Chem. 2003, 115, 2928-2931.
(b) D. H. Nouri, D. J. Tantillo, Curr. Org. Chem. 2006, 10, 2055-2074.
3 For a recent report, see: F. R. Moss III, S. R. Shuken, J. A. M. Mercer, C. M.
Cohen, T. M. Weiss, S. G. Boxer, N. Z. Burns, Proc. Natl. Acad.
Sci. 2018, 115, 9098-9103.
4 (a) V. Mascitti, E. J. Corey, J. Am. Chem. Soc. 2006, 128, 3118–3119. (b) V.
Mascitti, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 15664–15665.
5 J. A. M. Mercer, C. M. Cohen, S. R. Shuken, A. M. Wagner, M. W. Smith, F.
R. Moss III, M. D. Smith, R. Vahala, A. Gonzalez-Martinez, S. G. Boxer, N. Z.
Burns, J. Am. Chem. Soc. 2016, 138, 15845–15848.
6 N. J. Line, B. P. Witherspoon, E. N. Hancock, M. K. Brown, J. Am. Chem.
Soc. 2017, 139, 14392–14395.
7 (a) M. L. Conner, Y. Xu, M. K. Brown, J. Am. Chem. Soc. 2015, 137, 3482–
3485. (b) Y. Xu, Y. J. Hong, D. J. Tantillo, M. K. Brown, Org. Lett. 2017, 19,
3703–3706. (c) J. M. Wiest, M. L. Conner, M. K. Brown, Angew. Chem. Int.
Ed. 2018, 57, 4647–4651; Angew. Chem. 2018, 130, 4737-4741. (d) J. M.
Wiest, M. L. Conner, M. K. Brown, J. Am. Chem. Soc. 2018, 140, 15943–
15949. (e) M. L. Conner, J. M. Wiest, M. K. Brown, Tetrahedron 2019, 75,
3265–3271.
8 P. A. Wender, J. C. Lechleiter, J. Am. Chem. Soc. 1977, 99, 267–268.
9 The discrepancy in quantities of ethylene and methylbenzoate is likely due to
ethylene in the headspace of the flask.
10 M. T. Crimmins, T. L. Reinhold, Org. React. 1993, 44, 297-588.
11 A study highlighting the similarity of [2.2.0] and [2.1.1] bicycles, see M. W.
Lodewyk, C. Soldi, P. B. Jones, M. M. Olmstead, J. Rita, J. T. Shaw, D. J.
Tantillo, J. Am. Chem. Soc. 2012, 134, 18550–18553.
12
For a recent synthesis highlighting parallel vs. crossed [2+2]-cycloaddtions,
see: K.-I. Takao, H. Kai, A. Yamada, Y. Fukushima, D. Komatsu, A. Ogura, K.
Yoshida,. Angew. Chem. Int. Ed. 2019, 58, 9851-9855; Angew. Chem. 2019,
131, 9956-9960.
13 R. N. McDonald, C. E. Reineke, J. Org. Chem. 1967, 32, 1888–1893.
14 Use of other Lewis acid or esters was attempted. When conversion was
observed only the [2.1.1]-bicycle was observed. See the SI for details.
15 The products 40 and 41 were formed in low enantioselectivity accompanied
with other isomers with promoter 25.
16 S. W. Baldwin, M. T. Crimmins, P. M. Gross,. Tetrahedron Lett. 1978, 19,
4197-4200.
17 See the Supporting Information for Details
18 (a) K. B. Smith, K. M. Logan, W. You, M. K. Brown, Chem. Eur. J. 2014, 20,
12032–12036. (b) K. M. Logan, K. B. Smith, M. K. Brown, Angew. Chem.
2015, 127, 5317–5320. (c) K. M. Logan, M. K. Brown, Angew. Chem. 2016,
129, 869–873. (d) K. B. Smith, M. K. Brown, J. Am. Chem. Soc. 2017, 139,
7721–7724. (e) S. R. Sardini, M. K. Brown, J. Am. Chem. Soc. 2017, 139,
9823–9826. (f) A. M. Bergmann, S. K. Dorn, K. B. Smith, Logan, K. M. M. K.
Brown, Angew. Chem. Int. Ed. 2019, 58, 1719-1723; Angew. Chem. 2019,
131, 1733– 1737. (h) A. M. Bergmann, S. R. Sdardini, K. B. Smith, M. K.
Brown Isrl. J. Chem. 2019 DOI:10.1002/ijch.201900060.
19 J. Lee, S. Radomkit, S. Torker, J. del Pozo, A. H. Hoveyda, Nat. Chem.
2017, 10, 99–108.
20 N. Kim, J. T. Han, D. H. Ryu, J. Yun, Org. Lett. 2017, 19, 6144–6147.
21 M. Guisán-Ceinos, A. Parra, V. Martín-Heras, M. Tortosa, Angew. Chem.
Int. Ed. 2016, 55, 6969–6972; Angew. Chem. 2016, 128, 7083-7086.
22 C. Sandford, V. K. Aggarwal, Chem. Commun. 2017, 53, 5481–5494.
23 R. Armstrong, V. Aggarwal, Synthesis 2017, 49, 3323–3336.
24 D. J. Blair, C. J. Fletcher, K. M. P. Wheelhouse, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2014, 53, 5552–5555; Angew. Chem. 2014, 126, 5658-5661.
25 T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura, B. D.
Maxwell, M. D. Eastgate, P. S. Baran, Science, 2016, 352, 801-805.
26 The natural product generated in this way is contaminated with octanoic
acid (derived from hydrolysis of 58, which could not be separated due to
similar physiochemical properties).
27 For a related ring opening of a cyclobutyl radical, see: S. A. Green, S.
Vásquez-Céspedes, R. A. Shenvi, J. Am. Chem. Soc. 2018, 140, 11317–
11324.
This article is protected by copyright. All rights reserved.