Raptopoulou et al.
of the reaction conditions lead to new molecular structures
with optimized physical properties.6,7 The experience gained
in each step is used to design new synthetic routes, thus
forming a positive feedback loop. However, at this moment
we are still in the realm of serendipitous assembly as far as
3d cluster chemistry is concerned.8 Therefore, more studies
in this direction need to be carried out.
recently reported13 the first two members of a new class of
SMMs containing exclusively MnIII ions with blocking
temperatures greater than 2 K, compounds [Mn6O2(O2CR)2-
(salox)6(EtOH)4] [R ) Me (I); Ph (II)], where salox2- adopts
the rare µ3:η1:η2:η1 coordination mode, which usually leads
to high-nuclearity complexes.14 Expanding our research into
iron(III) carboxylate chemistry, we have reported15 the
synthesis and structural, spectroscopic, and magnetic char-
acterization of two neutral trinuclear oxo-centered ferric
complexes, [Fe3(µ3-O)(O2CPh)5(salox)L1L2] [L1 ) L2 )
MeOH (III); L1 ) EtOH and L2 ) H2O (IV)]. In this case,
the salox2- ligand adopts the common µ2:η1:η2:η1 coordina-
tion mode so the possibility of further use of the oximato O
atom to bridge a second metal and to increase the nuclearity
of the derived complex is present. By working in the weakly
coordinating solvent MeCN, we isolated the hexanuclear
complexes [Fe6(µ3-O)2(O2CPh)10(salox)2(L)2]‚xMeCN‚yH2O
[L ) MeCONH2, x ) 6, y ) 0 (1); L ) H2O, x ) 2, y ) 3
(2)], which are studied structurally. 2 is additionally studied
spectroscopically (57Fe Mo¨ssbauer, solid-state NMR) and
magnetically. Furthermore, in addition to the reaction
pathways for the formation of 1 and 2, we report a new
reaction pathway to III and IV, to better map this reaction
system. In both 1 and 2, the salox2- ligand adopts the rare
µ3:η1:η2:η1 coordination mode, leading to a topology of the
six FeIII ions analogous to that of the hexanuclear manganese-
(III) complexes I and II (other crystallographically estab-
lished coordination modes of Hsalox- and salox2- have been
reported by us elsewhere15).
We have recently been interested in polynuclear metal
clusters that may display single-molecule magnet (SMM)
behavior both because of their potential technological ap-
plications9 and because SMMs exhibit interesting physical
and quantum phenomena previously predicted by theory.10
To function as SMMs, the metal clusters should combine a
large-spin ground state S and an Ising (or easy-axis) type of
magnetization expressed by an axial zero-field splitting tensor
with D < 0.11 While it is easier to satisfy the first requirement
by choosing metal ions with large spin values (e.g., FeIII
S
) 5/2, Mn III S ) 2, Mn IV S ) 3/2, etc.) and suitable bridging
ligands to promote high-spin ground states through suitable
exchange interactions and spin topology, it is very difficult
to satisfy the second requirement in a controllable way.
Hence, a plethora of high-spin molecules do not display
SMM behavior, and further studies need to be carried out
by using new ligands or a combination of ligands in order
to achieve this goal.
Our approach to the field concerns the investigation of
the reaction between 3d metal ions and salicylaldehyde oxime
(H2salox) in the presence of carboxylates. H2salox is a
multifunctional ligand that in its mono- or dianionic form
can adopt various coordination modes, giving rise to a
number of homo- and heterometallic complexes.12 We have
Experimental Section
Materials. All manipulations were performed under aerobic
conditions using materials as received (Aldrich Co.). All chemicals
and solvents were reagent-grade. Basic iron(III) benzoate “[Fe3-
(µ3-O)(O2CPh)6(H2O)2(OH)]” was synthesized as previously de-
scribed.16
(4) (a) Yu, G.; Yin, S.; Liu, Y.; Shuai, Z.; Zhu, D. J. Am. Chem. Soc.
2003, 125, 14816. (b) Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Regli,
L.; Bonino, F.; Damin, A.; Lillerud, K.-P.; Bjorgen, M.; Zecchina, A.
Chem. Commun. 2004, 2300. (c) Shi, J.-M.; Xu, W.; Liu, Q,-V.; Liu,
F.-I.; Huang, Z.-I.; Lei, H.; Yu, W.-T.; Fang, Q. Chem. Commun. 2002,
756. (d) Coronado, E.; Clemente-Leo´n, M.; Gala´n-Mascaro´s, J. R.;
Gime´nez-Saiz, C.; Go´mez-Garc´ıa, C. J.; Mart´ınez-Ferrero, E. J. Chem.
Soc., Dalton Trans. 2000, 3955.
(5) For recent representative examples involving iron complexes, see: (a)
Legros, J.; Bolm, C. Chem.sEur. J. 2005, 11, 1086. (b) Avenier, F.;
Dubois, L.; Dubourdeaux, P.; Latour, J.-M. Chem. Commun. 2005,
480. (c) Be´nisvy, L.; Chottard, J.-C.; Marrot, J.; Li, Y. Eur. J. Inorg.
Chem. 2005, 999.
(6) (a) Brockman, J. T.; Abboud, K. A.; Hendrickson, D. N.; Christou,
G. Polyhedron 2003, 22, 1765. (b) Chakov, N. E.; Wernsdorfer, W.;
Abboud, K. A.; Hendrickson, D. N.; Christou, G. J. Chem. Soc., Dalton
Trans. 2003, 2243. (c) Kuroda-Sowa, T.; Nogami, T.; Konaka, H.;
Maekawa, M.; Munakata, M.; Miyasaka, H.; Yamashita, M. Polyhe-
dron 2003, 22, 1795.
(7) (a) Tsohos, A.; Dionyssopoulou, S.; Raptopoulou, C. P.; Terzis, A.;
Bakalbassis, E. G.; Perlepes, S. P. Angew. Chem., Int. Ed. 1999, 38,
983. (b) Papaefstathiou, G. S.; Perlepes, S. P.; Escuer, A.; Vicente,
R.; Font-Bardia, M.; Solans, X. Angew. Chem., Int. Ed. 2001, 40, 884.
(c) Boudalis, A. K.; Donnadieu, B.; Nastopoulos, V.; Clemente-Juan,
J. M.; Mari, A.; Sanakis, Y.; Tuchagues, J. P.; Perlepes, S. P. Angew.
Chem., Int. Ed. 2004, 43, 2266.
(8) Winpenny, R. E. W. J. Chem. Soc., Dalton Trans 2002, 1.
(9) (a) Leuenberger, M. N.; Loss, D. Nature 2001, 410, 789. (b) Cavallini,
M.; Gomez-Segura, J.; Ruiz-Molina, D.; Massi, M.; Albonetti, C.;
Rovira, C.; Veciana, J.; Biscarini, F. Angew. Chem., Int. Ed. 2005,
44, 888.
(10) (a) Friedman, J. R.; Sarachik, M. P.; Tejada, J.; Ziolo, R. Phys. ReV.
Lett. 1996, 76, 3830. (b) Thomas, L.; Lionti, F.; Ballou, R.; Gatteschi,
D.; Sessoli, R.; Barbara, B. Nature 1996, 383, 145. (c) Gatteschi, D.;
Sessoli, R.; J. Magn. Magn. Mater. 2004, 272-276, 1030.
(11) Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bull.
2000, 25, 1.
Physical Measurements. Elemental analysis for C, H, and N
was performed on a Perkin-Elmer 2400/II automatic analyzer. IR
spectra were recorded as KBr pellets in the range of 4000-400
cm-1 on a Bruker Equinox 55/S FT-IR spectrophotometer. Variable-
temperature magnetic susceptibility measurements were carried out
on polycrystalline samples of 2 in the 2.0-300 K temperature range
using a Quantum Design MPMS SQUID susceptometer under a
magnetic field of 1.5 T. Diamagnetic corrections for the complexes
were estimated from Pascal’s constants. The calculation of the
magnetic susceptibility was accomplished using a modified version
of MAGPACK.17 Minimization was carried out with an adapted
(12) Chaudhuri, P. Coord. Chem. ReV. 2003, 243, 143.
(13) Milios, C. J.; Raptopoulou, C. P.; Terzis, A.; Lloret, F.; Vicente, R.;
Perlepes, S. P.; Escuer, A. Angew. Chem., Int. Ed. 2004, 43, 210.
(14) (a) Thorpe, J. M.; Beddoes, R. L.; Collison, D.; Garner, C. D.;
Helliwell, M.; Holmes, J. M.; Tasker, P. A. Angew. Chem., Int. Ed.
1999, 38, 1119. (b) Chaudhuri, P.; Hess, M.; Rentschler, E.; Wey-
hermu¨ller, T.; Flo¨rke, U. New J. Chem. 1998, 553. (c) Zerbib, V.;
Robert, F.; Gouzerh, P. J. Chem. Soc., Chem. Commun. 1994, 2179.
(15) Raptopoulou, C. P.; Sanakis, Y.; Boudalis, A. K.; Psycharis, V.
Polyhedron 2005, 24, 711.
(16) Earnshaw, A.; Figgis, B. N. J. Chem. Soc. A 1966, 1656.
(17) (a) Borra´s-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.;
Tsukerblat, B. S. Inorg. Chem. 1999, 38, 6081. (b) Borra´s-Almenar,
J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S. J. Comput.
Chem. 2001, 22, 985.
2318 Inorganic Chemistry, Vol. 45, No. 5, 2006