Zhang et al.
SCHEME 1. Lewis-Acid-Catalyzed Rearrangement of
ated ring-opening reactions of methylenecyclopropanes (MCPs),
another kind of molecule having surprising stability along with
a high level of strain,3 and found some novel reaction patterns
of these substrates.4-6 Vinylidenecyclopropanes 1, as similar
substrates with MCPs, are of synthetic interest due to the
attractive feature that they have multiple possibilities for both
reactions of the three strained bonds (two proximal and one
distal bonds) in the cyclopropyl rings and the allene bonds.7,8
Thus far, we found that aryl-monosubstituted vinylidenecyclo-
propanes 1 (R1, R3 ) aryl; R2 ) alkyl; R4 ) H; R5 ) H or
alkyl) or aryl-disubstituted ones (R1, R2, R3 ) aryl; R4 ) H; R5
) H or alkyl) undergo interesting rearrangements in the presence
of Lewis acids such as Sn(OTf)2 to give the corresponding
naphthalene derivatives 2 in good to high yields in 1,2-
dichloroethane (DCE) (Scheme 1).7a Moreover, short thereafter,
we also reported arylvinylidenecyclopropanes 1 having three
substituents at the corresponding cyclopropyl rings to provide
easy access to the corresponding 6aH-benzo[c]fluorine deriva-
tives 3 (R1, R2, R3 ) aryl; R4, R5 ) alkyl) via a double
intramolecular Friedel-Crafts reaction or a 1-methyl-3-phenyl-
1H-indene derivative 4a (R1 ) R2 ) R3 ) R4 ) C6H5; R5 )
Me for 1a) via an intramolecular Friedel-Crafts reaction in good
Arylvinylidenecyclopropanes 1
(1) (a) Poutsma, M. L.; Ibarbia, P. A. J. Am. Chem. Soc. 1971, 93, 440-
450. (b) Smadja, W. Chem. ReV. 1983, 83, 263-320. (c) Hendrick, M. E.;
Hardie, J. A.; Jones, M., Jr. J. Org. Chem. 1971, 36, 3061-3062. (d) Sugita,
H.; Mizuno, K.; Saito, T.; Isagawa, K.; Otsuji, Y. Tetrahedron Lett. 1992,
33, 2539-2542. (e) Mizuno, K.; Sugita, H.; Kamada, T.; Otsuji, Y. Chem.
Lett. 1994, 449-452 and references therein. (f) Sydnes, L. K. Chem. ReV.
2003, 103, 1133-1150. (g) Akasaka, T.; Misawa, Y.; Ando, W. Tetrahedron
Lett. 1990, 31, 1173-1176. (h) Mizuno, K.; Sugita, H.; Isagawa, K.; Goto,
M.; Otsuji, Y. Tetrahedron Lett. 1993, 34, 5737-5738. (i) Mizuno, K.;
Nire, K.; Sugita, H.; Otsuji, Y. Tetrahedron Lett. 1993, 34, 6563-6566.
(j) Mizuno, K.; Sugita, H.; Hirai, T.; Maeda, H. Chem. Lett. 2000, 1144-
1145. (k) Mizuno, K.; Nire, K.; Sugita, H.; Maeda, H. Tetrahedron Lett.
2001, 42, 2689-2692. (l) Mizuno, K.; Maeda, H.; Sugita, H.; Nishioka,
S.; Hirai, T.; Sugimoto, A. Org. Lett. 2001, 3, 581-584. (m) Mizuno, K.;
Sugita, H.; Hirai, T.; Maeda, H.; Otsuji, Y.; Yasuda, M.; Hashiguchi, M.;
Shima, K. Tetrahedron Lett. 2001, 42, 3363-3366. (n) Maeda, H.; Zhen,
L.; Hirai, T.; Mizuno, K. ITE Lett. Batteries, New Technol. Med. 2002, 3,
485-488.
to high yields in the presence of Lewis acids such as Sn(OTf)2
under mild conditions (Scheme 1).7b,8 These findings provide
novel and alternative synthetic protocols in the preparation of
a variety of aromatic compounds on the basis of the substituted
manner of arylvinylidenecyclopropanes 1. Although preliminary
results on the Lewis-acid Sn(OTf)2-catalyzed arylvinylidenecy-
clopropanes 1 have already been communicated,7 herein we
describe the full details on the scope and limitations as well as
mechanistic insights of this Lewis-acid-catalyzed interesting
rearrangement of multisubstituted arylvinylidenecyclopropanes
1. In this paper, significant substituent effects on the aromatic
rings and the influence of substituents on the cyclopropyl rings
will be discussed in detail.
(2) For synthesis of vinylidenecyclopropanes, see: (a) Isagawa, K.;
Mizuno, K.; Sugita, H.; Otsuji, Y. J. Chem. Soc., Perkin Trans. 1 1991,
2283-2285 and references therein. (b) Al-Dulayymi, J. R.; Baird, M. S.
J. Chem. Soc., Perkin Trans. 1994, 1, 1547-1548. Other papers related to
vinylidenecyclopropanes: (c) Maeda, H.; Hirai, T.; Sugimoto, A.; Mizuno,
K. J. Org. Chem. 2003, 68, 7700-7706. (d) Pasto, D. J.; Brophy, J. E.
J. Org. Chem. 1991, 56, 4556-4559. (e) Pasto, D. J.; Miles, M. F. J. Org.
Chem. 1976, 41, 425-432. (f) Pasto, D. J.; Miles, M. F.; Chou, S.-K.
J. Org. Chem. 1977, 42, 3098-3101. (f) Pasto, D. J.; Borchardt, J. K.;
Fehlper, T. P.; Baney, H. F.; Schwartz, M. E. J. Am. Chem. Soc. 1976, 98,
526-529. (g) Pasto, D. J.; Chen, A. F.-T.; Clurdaru, G.; Paquette, L. A. J.
Org. Chem. 1973, 38, 1015-1026. (h) Pasto, D. J.; Borchardt, J. K. J. Am.
Chem. Soc. 1974, 96, 6937-6943.
(5) For the Lewis-acid-mediated cycloaddition of MCPs with activated
ketone or aldehyde, see: (a) Shi, M.; Xu, B. Tetrahedron. Lett. 2003, 44,
3839-3842. For the MgI2-mediated ring expansions of methylenecyclo-
propyl amides and imides, see: (b) Lautens, M.; Han, W. J. Am. Chem.
Soc. 2002, 124, 6312-6316. (c) Lautens, M.; Han, W.; Liu, J. H.-C.
J. Am. Chem. Soc. 2003, 125, 4028-4029. For the cycloaddition of MCPs
activated by a carbonyl group with allyltrimethylsilane in the presence of
TiCl4, see: (d) Monti, H.; Rizzotto, D.; Leandri, G. Tetrahedron 1998, 54,
6725-6738. For the cycloaddition of gem-dialkoxy-substituted MCPs with
aldehydes and imines upon heating, see: (e) Yamago, S.; Nakamura, E.
J. Org. Chem. 1990, 55, 5553-5555. (f) Yamago, S.; Yanagawa, M.;
Nakamura, E. Chem. Lett. 1999, 879-880.
(6) For some related Lewis-acid- or Brønsted-acid-mediated reactions
of MCPs, see: (a) Peron, G. L. N.; Kitteringham, J.; Kilburn, J. D.
Tetrahedron Lett. 1999, 40, 3045-3048. (b) Miura, K.; Takasumi, M.;
Hondo, T.; Saito, H.; Hosomi, A. Tetrahedron Lett. 1997, 38, 4587-4590.
(c) Peron, G. L. N.; Kitteringham, J.; Kilburn, J. D. Tetrahedron Lett. 2000,
41, 1615-1618. (d) Patient, L.; Berry, M. B.; Kilburn, J. D. Tetrahedron
Lett. 2003, 44, 1015-1017. (e) Peron, G.; Norton, D.; Kitteringham, J.;
Kilburn, J. D. Tetrahedron Lett. 2001, 42, 347-349. (f) Patient, L.; Berry,
M. B.; Coles, S. J.; Hursthouse, M. B.; Kilburn, J. D. Chem. Commun.
2003, 2552-2553. (g) Siriwardana, A. I.; Nakamura, I.; Yamamoto, Y.
Tetrahedron Lett. 2003, 44, 4547-4550. (h) Rajamaki, S.; Kilburn, J. D.
Chem. Commun. 2005, 1637-1639.
(3) For recent reviews, see: (a) Nakamura, I.; Yamamoto, Y. AdV. Synth.
Catal. 2002, 344, 111-129. (b) Brandi, A.; Cicchi, S.; Cordero, F. M.;
Goti, A. Chem. ReV. 2003, 103, 1213-1269.
(4) For some of the Lewis-acid- or Brønsted-acid-mediated transforma-
tions of MCPs in this laboratory, see: (a) Shi, M.; Xu, B. Org. Lett. 2002,
4, 2145-2148. (b) Huang, J.-W.; Shi, M. Tetrahedron 2004, 60, 2057-
2062. (c) Shao, L.-X.; Shi, M. Eur. J. Org. Chem. 2004, 426-430. (d)
Chen, Y.; Shi, M. J. Org. Chem. 2004, 69, 426-431. (e) Shao, L.-X.; Shi,
M. AdV. Synth. Catal. 2003, 345, 963-966. (f) Shi, M.; Chen, Y. J. Fluorine
Chem. 2003, 122, 219-227. (g) Huang, J.-W.; Shi, M. Tetrahedron Lett.
2003, 44, 9343-9347. (h) Shi, M.; Chen, Y.; Xu, B.; Tang, J. Green Chem.
2003, 5, 85-88. (i) Shi, M.; Xu, B. Tetrahedron Lett. 2003, 44, 3839-
3842. (j) Xu, B.; Shi, M. Org. Lett. 2003, 5, 1415-1418. (k) Shi, M.; Shao,
L.-X.; Xu, B. Org. Lett. 2003, 5, 579-582. (l) Shi, M.; Chen, Y.; Xu, B.;
Tang, J. Tetrahedron Lett. 2002, 43, 8019-8024. (m) Huang, J.-W.; Shi,
M. Synlett 2004, 2343-2346. (n) Shao, L.-X.; Huang, J.-W.; Shi, M.
Tetrahedron 2004, 60, 11895-11901. (o) Shi, M.; Xu, B.; Huang, J.-W.
Org. Lett. 2004, 6, 1175. (p) Shao, L.-X.; Xu, B.; Huang, J.-W.; Shi, M.
Chem. Eur. J. 2006, 12, 510-517.
(7) (a) Xu, G.-C.; Ma, M.; Liu, L.-P.; Shi, M. Synlett 2005, 1869-1872.
(b) Xu, G.-C.; Liu, L.-P.; Lu, J.-M.; Shi, M. J. Am. Chem. Soc. 2005, 127,
14552-14553.
(8) For isomerization of alkenylidenecyclopropanes catalyzed by Lewis
acids, see: Fitjer, L. Angew. Chem., Int. Ed. Engl. 1975, 14, 360-361.
510 J. Org. Chem., Vol. 72, No. 2, 2007