C O M M U N I C A T I O N S
Scheme 3 a
Scheme 4 a
a (a) Et3N, DMAP, toluene, -78 to 0 °C. (b) PPTS, MeOH. (c) DDQ,
CH2Cl2, pH 7 buffer. (d) 25 mol % 31, CH2Cl2, reflux.
catalytic asymmetric silane alcoholysis and tandem silylformyla-
tion-crotylsilylation methods. That the pathway from alcohol 4 to
dolabelide D comprises just 14 linear steps (the longest linear
sequence is from methacrolein to dolabelide D in 17 steps) is
testament to the efficiency of these methods.
Acknowledgment. The NIH (NIGMS GM58133) is acknowl-
edged for their generous support of this work and for a postdoctoral
fellowship to D.R.S. P.K.P. is supported by the NIH Medical
Scientist Training Program. We thank Bristol-Myers Squibb for a
graduate fellowship to S.J.O.
a (a) 15, CH2Cl2, -20 °C. (b) NaH, PMBBr, THF, reflux. (c) 25 mol %
PdCl2, CuCl, DMF, H2O, O2. (d) ent-19, CH2Cl2. (e) 2 mol % Rh(acac)-
(CO)2, 10 mol % PPh3, H2/CO, 2,2-dimethoxypropane, PPTS, 60 °C. (f)
9-BBN, THF, -78 to 23 °C; H2O2, NaOH. (g) (COCl)2, DMSO, Et3N,
CH2Cl2, -78 °C. (h) NaClO2, NaH2PO4, 2-methyl-2-butene, t-BuOH, H2O.
(i) K2CO3, CH2dCHCH2Br, acetone, reflux. (j) PPTS, acetone, H2O, reflux.
(k) n-Bu2BOTf, i-Pr2NEt, Et2O, -110 °C. (l) TESCl, imidazole, CH2Cl2.
(m) L-Selectride, CH2Cl2, -78 °C. (n) Ac2O, pyridine, DMAP, CH2Cl2.
(o) 10 mol % Pd(PPh3)4, morpholine, THF.
Supporting Information Available: Experimental procedures,
characterization data, and stereochemical proofs. This material is
References
1,5-Anti selective aldol coupling14 of ketone 18 and aldehyde 23
proceeded smoothly to give aldol 24 in 79% yield as a 10:1 mixture
of diastereomers. Protection of the alcohol as a TES ether gave 25
in 94% yield and was followed by a diastereoselective (∼5:1) ketone
reduction with L-Selectride to give 26. Following acetylation, the
diastereomers were separated, and 27 was isolated in 51% yield.
Finally, deprotection of the allyl ester gave the target acid 28 in
92% yield. The synthesis of 28 was carried out with a longest linear
sequence of 13 steps from methacrolein in 9% overall yield.
Esterification of alcohol 2 with acid 28 proceeded smoothly to
give 29 in 74% yield (Scheme 4). Methanolysis of the TES ether
and cyclopentylidene ketal-protecting groups was followed by
oxidative cleavage of the PMB ether groups to provide pentaol 30
in 70% overall yield (two steps). Initial attempts at macrocyclization
by ring-closing metathesis with the “second-generation” Grubbs
catalyst 31 were plagued not only by (not unexpected) low
stereoselectivity (∼1.3:1 E:Z), but also by significant amounts of
byproducts presumably derived from olefin isomerization path-
ways.15 Despite these setbacks, dolabelide D could be isolated in
31% yield. Although a sample of the natural product was unavail-
able, comparison (1H and 13C NMR, IR, HRMS, [R]D) to published
data confirmed the identity of our synthetic material.
(1) Ojika, M.; Nagoya, T.; Yamada, K. Tetrahedron Lett. 1995, 36, 7491.
(2) Suenaga, K.; Nagoya, T.; Shibata, T.; Kigoshi, H.; Yamada, K. J. Nat.
Prod. 1997, 60, 155.
(3) (a) Grimaud, L.; de Mesmay, R.; Prunet, J. Org. Lett. 2002, 4, 419. (b)
Desroy, N.; Le Roux, R.; Phansavath, P.; Chiummiento, L.; Bonini, C.;
Geneˆt, J.-P. Tetrahedron Lett. 2003, 44, 1763. (c) Le Roux, R.; Desroy,
N.; Phansavath, P.; Geneˆt, J.-P. Synlett 2005, 429. (d) Keck, G. E.;
McLaws, M. D. Tetrahedron Lett. 2005, 46, 4911.
(4) Schmidt, D. R.; Park, P. K.; Leighton, J. L. Org. Lett. 2003, 5, 3535.
(5) Schmidt, D. R.; O’Malley, S. J.; Leighton, J. L. J. Am. Chem. Soc. 2003,
125, 1190.
(6) (a) Zacuto, M. J.; O’Malley, S. J.; Leighton, J. L. J. Am. Chem. Soc.
2002, 124, 7890. (b) Zacuto, M. J.; O’Malley, S. J.; Leighton, J. L.
Tetrahedron 2003, 59, 8889.
(7) Taguchi, H.; Ghoroku, K.; Tadaki, M.; Tsubouchi, A.; Takeda, T. Org.
Lett. 2001, 3, 3811.
(8) (a) Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure,
C. K.; Norcross, R. D. Tetrahedron 1990, 46, 4663. (b) Paterson, I.;
Florence, G. J.; Gerlach, K.; Scott, J. P.; Sereinig, N. J. Am. Chem. Soc.
2001, 123, 9535.
(9) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988,
110, 3560.
(10) For a discussion of the advantages of this diol-protecting group, see:
Evans, D. A.; Connell, B. T. J. Am. Chem. Soc. 2003, 125, 10899.
(11) Kubota, K.; Leighton, J. L. Angew. Chem., Int. Ed. 2003, 42, 946.
(12) Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004, 6,
4375.
(13) Still, W. C.; Barrish, J. C. J. Am. Chem. Soc. 1983, 105, 2487.
(14) (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett. 1996, 37,
8585. (b) Evans, D. A.; Coleman, P. J.; Coˆte´, B. J. Org. Chem. 1997, 62,
788.
(15) The recently reported method to suppress such pathways did not provide
significant improvement in this case. See: Hong, S. H.; Sanders, D. P.;
Lee, C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 17160.
The first synthesis of dolabelide D (and of any of the dolabelides)
has been achieved. Methodologically, the four-step sequence that
converts alcohol 4 into protected diol fragment 8 is especially
noteworthy and serves as a demonstration of the power of the
JA058692K
9
J. AM. CHEM. SOC. VOL. 128, NO. 9, 2006 2797