624
V. I. Sorokin et al. · Polykis(dialkylamino)arenes by Nucleophilic Fluorine Replacement
1H NMR (300 MHz, CDCl3): δ = 1.59 (36 H, m, eral procedure. Yield 42%; yellow crystals with m. p.
◦
CH2CH2CH2), 3.03 (16 H, s, N(CH2)2), 3.16 (8 H, 176 – 177 C (from MeOH/hexane). – UV/vis (n-hexane):
m, N(CH2)2). – 19F NMR (272 MHz, CDCl3): δ =
λmax(lgε) = 220 (4.27), 303 (3.99), 360 nm (shoulder). –
−134.54 (s). – C40H60F2N6 (662.9): calcd. C 72.5, H 9.1, 1H NMR (300 MHz, CDCl3): δ = 2.77 (12 H, m, N(CH3)2),
N 12.7; found C 72.3, H 9.2, N 12.5.
2.81 (24 H, s, N(CH3)2), 2.83 (12 H, m, N(CH3)2). –
19F NMR (272 MHz, CDCl3): δ = −134.5 (m). – MS
(EI, 70 eV): m/z (%) = 447 (30) [M]+, 389 (17) [M-
C3H8N]+, 388 (12) [M-C3H8N-H]+, 374 (12) [M-C3H8N-
CH3]+, 58 (100) [C3H8N]+. – C24H42F1N7 (447.6): calcd.
C 64.4, H 9.5, N 21.9; found C 64.4, H 9.7, N 21.7.
7-Fluoro-1,2,3,4,5,6,8-heptakis(dimethylamino)naph-
thalene
THF as◦ solvent, yield 43%; yellow needles with m. p.
148 – 149 C (from MeOH/hexane). – UV/vis (n-hexane):
λmax (lgε) = 213 (4.54), 236 (4.50), 311 (3.41), 355 nm
(shoulder). – 1H NMR (300 MHz, CDCl3): δ = 2.75
(12 H, m, N(CH3)2), 2.77 (12 H, s, N(CH3)2), 2.78
(12 H, m, N(CH3)2), 2.81 (24 H, m, N(CH3)2), 2.82
(12 H, s, N(CH3)2). – 19F NMR (272 MHz, CDCl3): δ =
−134.0 (s). – MS (EI, 70 eV): m/z (%) = 447 (14) [M]+,
389 (11) [M-C3H8N]+, 58 (100) [C3H8N]+. – C24H42F1N7
(447.6): calcd. C 64.4, H 9.5, N 21.9; found C 64.4, H 9.4,
N 21.7.
Crystal structure determination of 3,6-difluoro-1,2,4,5-tetra-
kis(piperidin-1-yl)benzene
Single crystals suitable for X-ray diffraction were selected
directly from the analytical sample.
Crystal data: C26H40F2N4, M = 446.62, triclinic
space group P1, a = 6.5655(11), b = 8.8550(15), c =
¯
˚
10.8553(19) A, α = 77.893(4), β = 88.455(4), γ =
79.285(4)◦, Z = 1, Dcalc. = 1.223 g cm−3. Diffractome-
ter: Bruker SMART 1000 CCD, µ(Mo-Kα ) = 0.098 mm−1
,
7-Fluoro-1,2,3,4,5,6,8-heptakis(pyrrolidin-1-yl)naph-
thalene
graphite monochromator, crystal size 0.25×0.35×0.50 mm,
T = 120(2) K; 4357 reflection measured, 2858 unique
(Rint = 0.0246) which were used in all calculations, cut-off
criterion I > 2σs(I), µ = 0.083 mm−1, solution and refine-
ment with SHELXL-97 [32]. The final R and wR(F2) values
were 0.0608 and 0.1182 (all data), the residual electron den-
THF as solvent, yield of crude product 45%, which readily
oxidised on exposure to air and so was not characterised in
1
detail. – H NMR (300 MHz, CDCl3): δ = 1.86 (28 H, m,
CH2CH2), 3.24 (28 H, m, N(CH2)2).
sity was between 0.24 and −0.27 e A−3. Crystallographic
˚
data for the structure have been deposited with the Cam-
bridge Crystallographic Data Centre, CCDC-272720. Copies
of the data can be obtained free of charge on application to
The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK (Fax: int.code +(1223)336-033; e-mail for inquiry: file-
serv@ccdc.cam.ac.uk).
8-Fluoro-1,2,3,4,5,6,7-heptakis(dimethylamino)naph-
thalene
Obtained by reaction of 1,4,5,8-tetrafluoro-2,3,6,7-tetra-
kis(dimethylamino)naphthalene (0.1 mmol) with lithium di-
methylamide (0.8 mmol) in THF according to the gen-
[1] R. D. Chambers, Fluorine in Organic Chemistry,
p. 391, John Wiley & Sons, New York (1973);
M. Hudlicky, A. E. Pavlath (eds): Chemistry of Organic
Fluorine Compounds II – A Critical Review, p. 1296,
American Chemical Society, Washington (1995).
[2] G. M. Brooke, J. Fluorine Chem. 86, 1 (1997); P. P. Ro-
dionov, G. G. Furin, J. Fluorine Chem. 47, 361 (1990).
[3] C. J. Gilmore, D. D. MacNicol, A. Murphy, M. Russell,
Tetrahedron Lett. 24, 3269 (1983); A. A. Freer, D. D.
MacNicol, P. R. Mallinson, C. D. Robertson, Tetrahe-
dron Lett. 30, 5787 (1989).
[7] R. Koppang, J. Organomet. Chem. 46, 193 (1972).
[8] R. Koppang, J. Fluorine Chem. 8, 389 (1976).
[9] C. L. Cheong, B. J. Wakefield, J. Chem. Soc., Perkin
Trans. 1, 3301 (1988).
[10] R. W. Alder, Chem. Rev. 89, 1215 (1989). A. L.
Llamas-Saiz, C. Foces-Foces, J. Elguero, J. Mol.
Struct. 328, 297 (1994); A. F. Pozharskii, Russ. Chem.
Rev. 67, 1 (1998).
[11] F. E. Goodson, S. I. Hauck, J. F. Hartwig, J. Am. Chem.
Soc. 121, 7527 (1999); A. Ito, Y. Ono, K. J. Tanaka, J.
Org. Chem. 64, 8236 (1999).
[4] M. Bellas, D. Price, H. Suschitzky, J. Chem. Soc. C
1249 (1967).
[5] G. J. Allen, J. Burdon, J. C. Tatlow, J. Chem. Soc. 6329
(1965).
[6] D. Price, H. Suschitzky, H. Hollies, J. Chem. Soc. C
1967 (1969).
[12] R. D. Theys, G. Sosnovsky, Chem. Rev. 97, 83 (1997).
[13] V. I. Sorokin, V. A. Ozeryanskii, A. F. Pozharskii, Eur.
J. Org. Chem. 766 (2004).
[14] V. I. Sorokin, V. A. Ozeryanskii, A. F. Pozharskii, Z. A.
Starikova, Mendeleev Commun. 14, 14 (2004).
[15] R. K. Atwal, R. Bolton, Aust. J. Chem. 40, 241 (1987);
Unauthenticated
Download Date | 3/21/16 12:48 PM