4
Tetrahedron
sequence of reactions to prepare the iodinated quinoline 3l as
Acknowledgments
potential starting building block in different organic reactions
(Scheme 4).
We gratefully thank to CONACyT (CB-2013/220836),
FOMIX (CONACyT-CONCyTEG GTO-2012-C03-194610) for
financial support. We acknowledge the facilities from the
DCNyE, Chemistry Department, the National Laboratory UG-
CONACyT (LACAPFEM) in Guanajuato University for full
characterization. We thank to CONACyT for the fellowship to P.
D. Nahide.
Scheme 4. Application of the developed procedure to the
synthesis of quinoline 3u.
References and notes
1. Angali,; Pathak, D.; Singh, D. IJPSR, 2016, 7, 1-13.
2. a) Containing ferrocenyl group: Chibale, K.; Moss, J. R.; Blackie,
M.; Schalkwyk, D.; Smith, P. J. Tetrahedron Lett. 2000, 41,6231-
6235. b) Containing tiourea moiety: Mahajan, A.; Yeh, S.; Nell,
M.; Rensburg, C. E. J.; Chible, K. Bioorg. Med. Chem. Lett. 2007,
17, 5683-5685. c) Huo, Z.; Gridnev, I. D.; Yammamoto, Y. J.
Org. Chem. 2010, 75, 1266-1270. d) Containing triazines: Kumar,
A.; Srivastava, K.; Kumar, S. R.; Puri, S. K.; Chauhan, P. M. S.
Bioorg. Med. Chem. Lett. 20008, 18, 6530-6533. e) Containing
Tetrazole: Pandeya, S.; Agarwalb, P.; Srivastavab, K.;
Rajakumarb, S.; Purib, S. K.; Vermac, P.; Saxenac, J. K.;
Sharmad, A.; Lald, J.; Chauhana, S. E. J. Med. Chem. 2013, 66,
69-81.
The quinolone 2a was iodinated to yield 2l28 in good 82% of
yield. This compound was arylated under our optimized
conditions giving rise to the quinoline 3u in excellent 87% of
yield. The presence of a bulky iodine close to the arylation center
did not affect the reaction.
Finally according to the precedents of the iodonium salts
chemistry,19,29-30 it is plausible to propose the following
mechanism of reaction (Scheme 5).
Scheme 5. Proposed mechanism of reaction for the direct C-O
arylation of 2-aryl-4-quinolones by using iodonium salts.
3. Ma, X.; Zhou, W.; Brun, R. Bioorg. Med. Chem. Lett. 2009, 19,
986-989.
4. Rossiter, S.; Peron, S.J.; Whitfield, P.J.; Jones, K. Bioorg. Med.
Chem. Lett. 2005, 15, 4806–4808.
5. Gholap, A.R.; Toti, K.S.; Shirazi, F.; Kumari, R.; Bhat, M.K.;
Deshpande, M.V.; Srinivasan, K.V. Bioorg. Med. Chem. 2007,
15, 6705–6715.
6. Chen, Y.; Zhao, Y.; Lu, C.; Tzeng, C.; Wang, J. P. Bioorg. Med.
Chem. 2006, 14, 4373–4378.
7. Abadi, A.H.; Hegazy, G.H.; Zaher, A. A.E. Bioorg. Med. Chem.
2005, 13, 5759–5765.
8. Hu, B.; Jetter, J.; Kaufman, D.; Singhaus, R.; Bernotas, R.;
Unwalla, R.; Quinet, E.; Savio, D.; Halpern, A.; Basso, M.; Keith,
J.; Clerin, V.; Chen, L.; Liu, Q.Y.; Feingold, I.; Huselton, C.;
Azam, F.; Nilsson, A.G.; Wilhelmsson, A.; Nambi, P.; Wrobel, J.
Bioorg. Med. Chem. 2007, 15, 3321–3333.
9. Edmont, D.; Rocher, R.; Plisson, C.; Chenault, J. Bioorg. Med.
Chem. Lett. 2000, 10, 1831– 1834.
10. Evans, J. F.; Leveille, C.; Mancini, J.A.; Prasit, P., Therien, M.,
Zamboni, R., Gauthier, J.Y., Fortin, R., Charleson, P., Maclntyre,
D.E., 1991. 5-lipooxygenase-activating protein is the target of a
quinoline class of leukotriene synthesis inhibitors. Mol. Pharm.
40, 22–27.
The mechanism starts with the deprotonation of quinolone by
potassium tert-butoxide to generate I. This bidentade anion
regioselectively attacks at the electrophilic iodine center in the
salt giving rise to II. The evolution of this intermediate via
reductive elimination yields compounds 3a-t with a concomitant
releasing of iodobenzene.
11. Youliang, W.; Zhitong, Z.; Liming, Z. J. Am. Chem.
Soc., 2015, 137, 5316–5319
12. Örtqvist, P.; Peterson, S. D.; Åkerblom, E.; Gossas, T.; Sabnis, Y.
A.; Fransson, R.; Linderberg, G.; Danielson, U. H.; Karlen, A.;
Sandström, A. Bioorg. Med. Chem. 2007, 15, 1448-1474.
13. Jin, M.; Petronella, B. A.; Cooke, A.; Kadalbajoo, M.; Siu, K. W.;
Kleinberg, A.; May, E. W.; Gokhale, P. C.; Schulz, R.; Kahler, J.;
Bittner, M. A.; Foreman, K.; Pachter, J. A.; Wild, R.; Epstein, D.;
Mulvihill, M. J. ACS Med. Chem. Lett. 2013, 4, 627-631.
14. Marganakop, S. B.; Kamble, R. R.; Taj, T.; Kariduraganvar, M. Y.
Med. Chem. Res. 2012, 21, 185-191.
15. Massari, S.; Daelemans, D.; Manfroni, G.; Sabatini, S.; Tabarrini,
O.; Pannecouque, C.; Cecchetti, V. Bioorg. Med. Chem. 2009, 17,
667–674.
16. a) Andersen, K. E.; Lundt, B. F.; Jøegensen, A. S.; Braestrup, C.
Eur. J. Med. Chem. 1996, 31, 417-425. b) Cope, H.; Mutter, R.;
Heal, W.; Pascoe, C.; Brown, P.; Pratt, S.; Chen, B Eur. J. Med.
Chem. 2006, 41, 1124-1143. c) Hoekstra, W. J.; Paterl, H. S.;
Liang, X.; Blanc, J. B. P.; Heyer, D. O.; Willson, T. M.; Iannone,
M. A.; Kadwell, S. H.; Miller, L. A.; Pearce, K. H.; Simmons, C.
A.; Searin, J. J. Med. Chem. 2005, 48, 2243-2247.
In summary we developed a mild, efficient and operationally
simple procedure for the direct arylation of 2-aryl-4-quinolones,
to produce in one-pot a new Csp2-O bond under metal- and
ligand-free conditions. To the best of our knowledge, this is the
first work with a wide application totally directed to the synthesis
of functionalized bioactive 2-aryl-4-aryloxyquinoline core,
containing groups like -Cl, -F or –CF3 relevant in medicinal
chemistry. The procedure was carried out with the use of
conventional heating. Additionally, it shows totally regio- and
chemoselectivity allowing for synthesizing exclusively
O-arylquinolines by using simple non-symmetrical iodonium
salts. This represents a more atom-economical protocol regarding
to those previously described,22 which use symmetrical salts. The
procedure has a broad scope and tolerates different functional
groups nature.
17. D´Angelo, N. D.; Peterson, J. J.; Booker, S. J.; Fellows, I.;
Domínguez, C.; Hungate, R.; Reider, P. J.; Kim, T. S. Tetrahedron
Lett. 2006, 47, 5045-5048.
18. Burgos, C. H.; Barder, T. E.; Huang, X.; Buchwald, S. L. Angew.
Chem. Int. Ed. 2006, 45, 4321-4326.
19. Zhdankin, V. ARKIVOC, 2009, i, 1-62.