1926
K. M. Sureshan et al. / Tetrahedron Letters 48 (2007) 1923–1926
6. Natural PtdIns(3,4,5)P3: (a) Watanabe, Y.; Nakatomi, M.
Tetrahedron 1999, 55, 9743–9754; (b) Gaffney, P. R. J.;
Reese, C. B. J. Chem. Soc., Perkin Trans. 1 2001, 192–205;
(c) Kubiak, R. J.; Bruzik, K. S. J. Org. Chem. 2003, 68,
960–968; PtdIns(3,4,5)P3 with saturated acyl chain: (i)
racemic: (d) Watanabe, Y.; Hirofuji, H.; Ozaki, S.
Tetrahedron Lett. 1994, 35, 123–124; (ii) Optically pure:
(e) Gou, D.-M.; Chen, C.-S. J. Chem. Soc., Chem.
Commun. 1994, 2125–2126; (f) Bruzik, K. S.; Kubiak, R.
J. Tetrahedron Lett. 1995, 36, 2415–2418; (g) Reddy, K.
K.; Saady, M.; Falck, J. R.; Whited, G. J. Org. Chem.
1995, 60, 3385–3390; (h) Chen, J.; Profit, A. A.; Prestwich,
G. D. J. Org. Chem. 1996, 61, 6305–6312; (i) Grove, S. J.
A.; Holmes, A. B.; Painter, G. F.; Hawkins, P. T.;
Stephens, L. R. Chem. Commun. 1997, 1635–1636; (j)
Shirai, R.; Morita, K.; Nishikawa, A.; Nakatsu, N.;
Fukui, Y.; Morisaki, N.; Hashimoto, Y. Tetrahedron Lett.
1998, 39, 9485–9488; (k) Jiang, T.; Sweeney, G.; Rudolf,
M. T.; Klip, A.; Traynor-Kaplan, A.; Tsien, R. Y. J. Biol.
Chem. 1998, 273, 11017–11024; Phosphorothioate ana-
logue: (l) Kubiak, R. J.; Bruzik, K. S. Bioorg. Med. Chem.
Lett. 1997, 7, 1231–1234.
Bifunctional phosphitylating reagent 20 was pre-
pared from bis(N,N-diisopropylamino)chlorophosphine
(Scheme 2).19 Treatment of 20 with 1,2-O-isopropylid-
ene-sn-glycerol (15) in the presence of tetrazole provided
phosphoramidite 21 (95%).20
Trisphosphate 14 was phosphitylated with phospho-
ramidite 21 in the presence of tetrazole to afford 22
(99%) as a diastereomeric mixture (Scheme 3). The iso-
propylidene group was cleaved with TFA following
Watanabe’s protocol21 to afford diol 23 (88%). Diol 23
is a highly advanced common precursor for the synthesis
of various PtdIns(3,4,5)P3 analogues with different acyl
chains or affinity probes. DCC-promoted esterification
of diol 23 with octanoic acid provided the fully pro-
tected lipid 24. We have not observed any phosphate
migration (cyclisation) under these conditions. Finally,
the benzyl protecting groups were removed by hydro-
genolysis to provide di-octanoyl (di-C8)-PtdIns(3,4,5)P3,
26 in good yield. Similarly distearoyl PtdIns(3,4,5)P3,
27 was synthesized via stearoylation of diol 23 followed
by hydrogenolysis. Thus, PtdIns(3,4,5)P3 analogues with
any acyl chain can be prepared from the diol 23. The
known method to deprotect the benzyl protecting
groups without affecting the unsaturated fatty acyl
chain,22 extends the scope of our strategy for unsatu-
rated lipid synthesis.
7. Sureshan, K. M.; Shashidhar, M. S.; Praveen, T.; Das, T.
Chem. Rev. 2003, 103, 4477–4503.
8. Garret, S. W.; Liu, C.; Riley, A. M.; Potter, B. V. L. J.
Chem. Soc., Perkin Trans. 1 1998, 1367–1368; But when
the 2-OH is free, the ester takes the 2-O-position. See:
Godage, H. Y.; Riley, A. M.; Potter, B. V. L. Chem.
Commun. 2006, 2989–2991.
9. Toker, A.; Meyer, M.; Reddy, K. K.; Falck, J. R.; Aneja,
R.; Aneja, S.; Parra, A.; Burns, D. J.; Ballas, L. M.;
Cantley, L. C. J. Biol. Chem. 1994, 269, 32358–32367.
10. Riley, A. M.; Godage, H. Y.; Mahon, M. F.; Potter, B. V.
L. Tetrahedron: Asymmetry 2006, 17, 171–174.
11. Riley, A. M.; Mahon, M. F.; Potter, B. V. L. Angew.
Chem., Int. Ed. 1997, 36, 1472–1474.
12. Watanabe et al. have selectively deprotected the ester
protecting groups leaving the silyl ethers unaffected using a
Grignard reagent. Watanabe, Y.; Fujimoto, T.; Shino-
hara, T.; Ozaki, S. J. Chem. Soc., Chem. Commun. 1991,
428–429.
In conclusion, we have reported efficient routes for the
syntheses of two PtdIns(3,4,5)P3 analogues. Our strat-
egy excludes the possibility of racemization in the lipid
chain and thus provides access to PtdIns(3,4,5)P3 ana-
logues with an unambiguous optical homogeneity. Since
the introduction of the acyl moiety is towards the end, a
library of PtdIns(3,4,5)P3 analogues with any acyl chain
can be synthesized in a short period of time. Moreover,
since the synthesis starts from a high yielding orthoeste-
rification of myo-inositol, and the desymmetrization of
the triol provides the required diastereomer preferen-
tially, the total yield of the lipid is much better than
previously reported methods.
13. Gaffney, P. R. J.; Reese, C. B. Tetrahedron Lett. 1997, 38,
2539–2542.
14. Although this transformation has been used for the
synthesis of various PIPns, in our hands, this transforma-
tion, at times, has resulted in acyl migration to some
extent.
15. Xu, Y.; Lee, S. A.; Kutateladze, T. G.; Sbrissa, D.;
Shisheva, A.; Prestwich, G. D. J. Am. Chem. Soc 2006,
128, 885–897.
16. Freeman, I. P.; Morton, I. D. J. Chem. Soc. 1966, 1710–
1714; Serdarevich, B. J. Am. Oil Chem. Soc. 1967, 44, 381–
385.
Acknowledgement
We thank the Wellcome Trust for Programme Grant
support (060544).
17. Aneja, S. G.; Parra, A.; Stoenescu, C.; Xia, W.; Aneja, R.
Tetrahedron Lett. 1997, 38, 803–806.
References and notes
18. Aneja, R.; Aneja, S. G. Tetrahedron Lett. 2000, 41, 847–
850.
19. Dreef, C. E.; Elie, C. J. J.; Hoogerhout, P.; van der Marel,
G. A.; van Boom, J. H. Tetrahedron Lett. 1988, 29, 6513–
6516.
20. Lemmen, P.; Buchweitz, K. M.; Stumpf, R. Chem. Phys.
Lipids 1990, 53, 65–75.
21. Watanabe, Y.; Abe, Y.; Takao, H. Carbohydr. Lett. 1998,
3, 85–90.
1. Potter, B. V. L.; Lampe, D. Angew. Chem., Int. Ed. Engl.
1995, 34, 1933–1972.
2. Hinchliffe, K. A. Curr. Biol. 2001, 11, R371–R373.
3. (a) Vanhaesebroek, B.; Leevers, S. J.; Panayotou, G.;
Waterfield, M. D. Trends Biochem. Sci. 1997, 22, 267–272;
(b) Rameh, L. E.; Cantley, L. C. J. Biol. Chem. 1999, 274,
8347–8350.
4. Tseng, P.-H.; Lin, H.-P.; Hu, H.; Wang, C.; Zhu, M. X.;
Chen, C.-S. Biochemistry 2004, 43, 11701–11708.
5. Hemmings, B. A. Science 1997, 277, 534.
22. Sculimbrene, B. R.; Xu, Y.; Miller, S. J. J. Am. Chem. Soc.
2004, 126, 13182–13183.