C O M M U N I C A T I O N S
Scheme 3. Preparation of 1a
Scheme 5. Final Stage
raphy3a partly accounts for the loss of the material. Only 5% of
homodimers of 2 were detected, and diene 1 did not form its
homodimer under the reaction conditions. The fragile nature of 2
(thermal decomposition at g47 °C) precluded more forcing reaction
conditions.
In summary, we completed the total synthesis of FR901464 in
the 13 longest linear steps with 31 total steps, which features Zr/
Ag-promoted alkynylation using electron-deficient methyl propi-
olate, mild Red-Al reduction, stereoselective [2,3]-sigmatropic
rearrangement via a selenoxide, and diene-ene cross olefin metath-
esis without protecting groups. Biological studies of FR901464 and
its analogs are underway in our laboratory.
a Conditions: (a) DIBAL-H (2.0 equiv), CH2Cl2, -78 °C; Ph3PCH3Br
(2.1 equiv), tBuOK (2.0 equiv), THF, -78f48 °C, 77%; (b) CSA (10 mol
%), MeOH, 23 °C, 95%; (c) methallyl bromide (4.0 equiv), Ag2O (1.5
equiv), DMF, 23 °C, 86%; (d) Grubbs’ 2nd cat. (1 mol %), PhH, reflux,
quant.; (e) PDC (6.0 equiv), (ClCH2)2, reflux, 72%; (f) H2 (1 atm), PtO2 (1
mol %), EtOH, 23 °C; quant.; (g) allyl-MgBr (2.0 equiv), THF, -78 °C,
96%; (h) Et3SiH (10 equiv), BF3‚OEt2 (4.0 equiv), CF3CH2OH (8.0 equiv),
-78 °C, 38%; (i) TFA/CH2Cl2 (1:9), 23 °C, 3 (1.2 equiv), HATU (1.2
Acknowledgment. We wish to dedicate this paper to the 60th
birthday of Professor K. C. Nicolaou. This work was supported by
the University of Pittsburgh, the American Chemical Society (PRF
No. 38542-G1), The American Cancer Society George Heckman
Institutional Research Grant, and The Competitive Medical Re-
search Fund. B.J.A. is thankful for a Graduate Excellence Fellow-
ship.
i
equiv), Pr2NEt (4.0 equiv), 23 °C, 86%; (j) 22 (5 mol %), methacrolein
(20 equiv), CH2Cl2, 23 °C, 57% (67% based on recovered 20); (k)
t
Ph3PCH3Br (1.4 equiv), BuOK (1.2 equiv), THF, 0 °C, 86%.
Scheme 4. Preparation of 2a
Supporting Information Available: Experimental procedures and
spectroscopic data for all the new compounds and FR901464. This
References
(1) (a) Nakajima, H.; Sato, B.; Fujita, T.; Takase, S.; Terano, H.; Okuhara,
M. J. Antibiot. 1996, 49, 1196-1203. (b) Nakajima, H.; Hori, Y.; Terano,
H.; Okuhara, M.; Manda, T.; Matsumoto, S.; Shimomura, K. J. Antibiot.
1996, 49, 1204-1211. (c) Nakajima, H.; Takase, S.; Terano, H.; Tanaka,
H. J. Antibiot. 1997, 50, 96-99.
(2) A few examples: (a) Imamura, Y.; Ohtsu, Y.; Tanaka, H.; Hatakeyama,
M.; Manabe, T.; Kawaguchi, H.; Handa, H.; Takahashi, T. Heterocycles
2004, 64, 51-56. (b) Tashiro, E.; Imoto, M.; Yoshida, M.; Kitahara, T.;
Watanabe, H.; Nakajima, H. Jpn. Kokai Tokkyo Koho JP 2005323514,
Nov. 24, 2005.
(3) (a) Thompson, C. F.; Jamison, T. F.; Jacobsen, E. N. J. Am. Chem. Soc.
2001, 123, 9974-9983; 40 total, 20 longest linear steps. (b) Horigome,
M.; Motoyoshi, H.; Watanabe, H.; Kitahara, T. Tetrahedron Lett. 2001,
42, 8207-8210; 42 total, 24 longest linear steps.
(4) For examples, see: (a) Yang, Z. Q.; Geng, X. D.; Solit, D.; Pratilas, C.
A.; Rosen, N.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 7881-
7889. (b) Snider, B. B.; Hawryluk, N. A. Org. Lett. 2001, 3, 569-572.
(c) Clive, D. L. J.; Liu, D. Z. Tetrahedron Lett. 2005, 46, 5305-5307.
(5) Presentation of preliminary results: (a) Albert, B. J.; Sivaramakrishnan,
A.; Koide, K. 228th ACS National Meeting, Philadelphia, PA, Aug 22-
26; American Chemical Society: Washington, DC, 2004. First appearance
in the literature: (b) Crimmins, M. T.; Christie, H. S.; Chaudary, K.; Long,
A. J. Am. Chem. Soc. 2005, 127, 13810-13812.
(6) Miwa, K.; Aoyama, T.; Shioiri, T. Synlett 1994, 107-108.
(7) (a) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000,
122, 1806-1807. (b) The catalytic version was unsuccessful. (c) Alcohol
7 was recrystallized to 95% ee and used in subsequent steps.
(8) Wei, Z.-Y.; Knaus, E. E. Synthesis 1994, 1463-1466.
(9) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-
956.
(10) Grela, K.; Harutyunyan, S.; Michrowska, A. Angew. Chem., Int. Ed. 2002,
41, 4038-4040.
(11) Albert, B. J.; Koide, K. Org. Lett. 2004, 6, 3655-3658.
(12) Shahi, S. P.; Koide, K. Angew. Chem., Int. Ed. 2004, 43, 2525-2527.
(13) Meta, C. T.; Koide, K. Org. Lett. 2004, 6, 1785-1787.
(14) (a) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1972, 94, 7154-
7155. (b) Reich, H. J. J. Org. Chem. 1975, 40, 2570-2572.
a Conditions: (a) Ag-CtC-CO2Me (1.7 equiv), Cp2ZrCl2 (1.3 equiv),
AgOTf (0.2 equiv), CH2Cl2, 23 °C, 84%; (b) Red-Al (2.0 equiv), -72 °C,
81%; (c) TESCl (1.4 equiv), imidazole (1.5 equiv), THF, 0 °C, quant.; (d)
DIBAL-H (3.0 equiv), THF, -78 °C, 95%; (e) o-O2N-PhSeCN (1.2 equiv),
nBu3P (1.4 equiv), THF, 0 °C, quant.; (f) H2O2 (30% v/v in H2O, excess),
DMAP (5.0 equiv), THF, -44f23 °C, 96%; (g) TESCl (1.4 equiv),
imidazole (1.6 equiv), THF, 0 °C, 95%; (h) OsO4 (1 mol %), NMO (0.96
equiv), THF/H2O (10:1), 0f23 °C; Pb(OAc)4 (1.2 equiv), PhH, 0f23 °C,
71% (86% based on recovered 29); (i) AcOH/THF/H2O (3:3:1), 0f23 °C,
91%.
chiral E-allylselenides, we proceeded to treat substrate 5 with H2O2
and DMAP, which promoted a rearrangement via the putative
selenoxide to provide the desired allylic alcohol 28 and its
diastereomer with a pleasantly surprising diastereomeric ratio of
7.5:1.14 Alcohol 28 was protected as the TES ether 29, which
dramatically improved the regioselectivity of the oxidative cleavage
sequence (OsO4-NMO; Pb(OAc)4), giving ketone 30. Finally, both
TES groups were hydrolyzed under carefully optimized conditions
to form the fully functionalized B-ring fragment 2.
The stage was set to test the cross diene-ene metathesis between
1 and 2 (Scheme 5). Gratifyingly, despite the absence of protecting
groups, the coupling of these two fragments in the presence of
catalyst 22 furnished FR901464 in 40% yield after subjecting the
unreacted 1 and 2 to the same conditions without a detectable cis
isomer. The decomposition of FR901464 during column chromatog-
JA058216U
9
J. AM. CHEM. SOC. VOL. 128, NO. 9, 2006 2793