Organic Letters
Letter
(b) Eguchi, S. Recent Progress in the Synthesis of Heterocyclic
Natural Products by the Staudinger/Intramolecular Aza-Wittig
Reaction. ARKIVOC 2004, 2005 (2), 98. (c) Palacios, F.; Alonso,
C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. The Aza-Wittig
Reaction: An Efficient Tool for the Construction of Carbon−
Nitrogen Double Bonds. Tetrahedron 2007, 63 (3), 523−575.
(d) Palacios, F.; Aparicio, D.; Rubiales, G.; Alonso, C.; de los
Santos, J. Synthetic Applications of Intramolecular Aza-Wittig
Reaction for the Preparation of Heterocyclic Compounds. Curr.
Org. Chem. 2009, 13 (8), 810−828. (e) Lao, Z.; Toy, P. H. Catalytic
Wittig and Aza-Wittig Reactions. Beilstein J. Org. Chem. 2016, 12 (1),
2577−2587.
toward four cell lines (HEK, Va13, MCF7, A549) did not
reveal any noticeable cytotoxic effects. This allows for further
assay of other biological properties of 11, including their
nootropic activity.
In conclusion, we have developed a new synthetic
transformation of γ-azidobutyronitriles into pyrrole-derived
iminophosphazenes proceeding via unusual aza-Wittig reac-
tions between the phosphazene and α-EWG-activated nitrile
units. The reactivity of this type was revealed for ester, amide,
or nitrile groups as activating α-EWGs. Alternatively, for α-
keto derivatives, the chemoselectivity was switched toward the
common aza-Wittig reaction between the phosphazene and
carbonyl groups. The obtained iminophosphazenes were found
to exhibit properties of typical N,N-binucleophiles, readily
reacting with such bielectrophiles as oxalyl, succinyl, or ortho-
phthaloyl chlorides to afford pyrrolo[1,2-a]imidazole and
pyrrolo[1,2-a][1,3]diazepine systems.
(2) For recent examples, see: (a) Alaime, T.; Daniel, M.; Hiebel, M.-
A.; Pasquinet, E.; Suzenet, F.; Guillaumet, G. Access to 1H-Indazoles,
1H-Benzoindazoles and 1H-Azaindazoles from (Het)aryl Azides: a
One-Pot Staudinger-Aza-Wittig Reaction Leading to N−N Bond
Formation? Chem. Commun. 2018, 54 (60), 8411−8414. (b) Jayaram,
́
V.; Sridhar, T.; Sharma, G. V. M.; Berree, F.; Carboni, B. Synthesis of
Polysubstituted Isoquinolines and Related Fused Pyridines from
Alkenyl Boronic Esters via a Copper-Catalyzed Azidation/Aza-Wittig
Condensation Sequence. J. Org. Chem. 2018, 83 (2), 843−853.
(c) Zhang, W.; Zhang, X.; Ma, X.; Zhang, W. One-Pot Synthesis of
Dihydroquinazolinethione-Based Polycyclic System. Tetrahedron Lett.
2018, 59 (43), 3845−3847. (d) Gurskaya, L.; Bagryanskaya, I.;
Amosov, E.; Kazantsev, M.; Politanskaya, L.; Zaytseva, E.;
Bagryanskaya, E.; Chernonosov, A.; Tretyakov, E. 1,3-Diaza[3]-
ferrocenophanes Functionalized with a Nitronyl Nitroxide Group.
Tetrahedron 2018, 74 (15), 1942−1950. (e) Smirnov, A. Y.; Baleeva,
N. S.; Zaitseva, S. O.; Mineev, K. S.; Baranov, M. S. Derivatives of
Azidocinnamic Acid in the Synthesis of 2-Amino-4-arylidene-1H-
imidazol-5(4H)-ones. Chem. Heterocycl. Compd. 2018, 54 (6), 625−
629. (f) Qiao, J.; Liu, Y.; Du, Y. Method to Build 2,4-Substituted
Selenazole from β-Azido Diselenide and Carboxylic Acid: A Formal
Synthesis of Selenazofurin. Tetrahedron 2018, 74 (24), 3061−3068.
(g) Shao, J.; Zhu, M.; Gao, L.; Chen, H.; Li, X. Synthesis of
Tetracyclic Azasugars Fused Benzo[e][1,3]thiazin-4-one by the
Tandem Staudinger/Aza-Wittig/Cyclization and Their HIV-RT
Inhibitory Activity. Carbohydr. Res. 2018, 456, 45−52. (h) Guan,
Z.-R.; Liu, Z.-M.; Ding, M.-W. New Efficient Synthesis of 1H-
Imidazo-[4,5-c]quinolines by a Sequential Van Leusen/Staudinger/
Aza-Wittig/Carbodiimide-Mediated Cyclization. Tetrahedron 2018,
74 (50), 7186−7192. (i) Xiong, J.; Wei, X.; Liu, Z.-M.; Ding, M.-W.
One-Pot Synthesis of Polysubstituted Imidazoles via Sequential
Staudinger/Aza-Wittig/Ag(I)-Catalyzed Cyclization/Isomerization. J.
Org. Chem. 2017, 82 (24), 13735−13739. (j) Savva, A. C.; Mirallai, S.
I.; Zissimou, G. A.; Berezin, A. A.; Demetriades, M.; Kourtellaris, A.;
Constantinides, C. P.; Nicolaides, C.; Trypiniotis, T.; Koutentis, P. A.
Preparation of Blatter Radicals via Aza-Wittig Chemistry: The
Reaction of N-Aryliminophosphoranes with 1-(Het)aroyl-2-aryldia-
zenes. J. Org. Chem. 2017, 82 (14), 7564−7575. (k) Subota, A. I.;
Artamonov, O. S.; Gorlova, A.; Volochnyuk, D. M.; Grygorenko, O.
O. Approach to 5-Substituted 6,7,8,9-Tetrahydro-5H-pyrido[3,2-
c]azepines. Tetrahedron Lett. 2017, 58 (20), 1989−1991. (l) Nishi-
mura, Y.; Kubo, T.; Okamoto, Y.; Cho, H. Convergent Synthesis of
4,6-Unsubstituted 5-Acyl-2-aminodihydropyrimidines Using Weinreb
Amide. Tetrahedron Lett. 2017, 58 (45), 4236−4239. (m) Chen, X.;
Zhong, Y.; Zhao, Z.; Huang, G. New Efficient Synthesis of 2-Thioxo-
2,3-dihydropyrimidin-4(1H)-ones from Baylis−Hillman Adducts.
Synthesis 2017, 49 (24), 5371−5379. (n) Nie, B.-J.; Wu, L.-H.; Hu,
R.-F.; Sun, Y.; Wu, J.; He, P.; Huang, N.-Y. Synthesis of
Cyclopropa[c]indeno[1,2-b]quinolines through a MCR/Staudinger/
Aza-Wittig Sequence. Synth. Commun. 2017, 47 (15), 1368−1374.
(o) Luo, J.; Zhao, A.; Zheng, C.; Wang, T. Synthesis and Herbicidal
Activity of Novel 6-Arylthio-3-methylthio-1H-pyrazolo[3,4-d]-
pyrimidin-4(5H)-ones. Phosphorus, Sulfur Silicon Relat. Elem. 2017,
192 (10), 1124−1126.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, analytical data, details of DFT
calculations, and copies of H and 13C NMR spectra
1
Accession Codes
the supplementary crystallographic data for this paper. These
uk, or by contacting The Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44
1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the Russian Foundation for
Basic Research, Grant Number 18-53-41009, and Ministry of
Innovation Development of the Republic of Uzbekistan, Grant
Number MRU-FA-74/2017. The NMR measurements were
carried out at the Center for Magnetic Tomography and
Spectroscopy, Faculty of Fundamental Medicine of Moscow
State University. X-ray diffraction studies were performed at
the Centre of Shared Equipment of IGIC RAS and at the
Durham X-ray Centre.
REFERENCES
■
(3) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the
Structural Diversity, Substitution Patterns, and Frequency of Nitrogen
(1) For reviews, see: (a) Gusar, N. I. Synthesis of Heterocycles by
the Aza-Wittig Reaction. Russ. Chem. Rev. 1991, 60 (2), 146−161.
E
Org. Lett. XXXX, XXX, XXX−XXX