C O M M U N I C A T I O N S
Chalcone and styrene afforded the rearranged acetals 6 and 7 in
MeOH, respectively, as reported by Moriarty.4 Oxidation of indene
in acetic acid in the presence of a small amount of acetic anhydride
gave the trans-diacetate 8 with 90% stereoselectivity, while the
reaction in dichloromethane-acetic acid, followed by acetylation
of the resulting vicinal diol monoacetate, produced selectively the
cis-diacetate 8 in 68% yield.15 Reaction of the silyl enol ether 11
in MeCN-water afforded the R-hydroxy ketone 9, while under
solvent-free conditions 1,4-diphenylbutane-1,4-dione was produced
in 74% yield.16 Phenyl-λ3-iodanation of 1-decyne catalyzed by HgO
afforded a 1:1 alkynyl-λ3-iodane‚18C6 complex 10 directly.17
In conclusion, we have synthesized the hydroxy-λ3-iodane
complex, coordinated by a neutral molecule, as stable crystals. The
λ3-iodane complex serves as a versatile oxidant.
Supporting Information Available: Experimental procedures,
compound characterization data for 3-10, CSI-MS (PDF), and X-ray
crystallographic data in CIF format for 1‚BF4 (S ) 18C6). This
-
Figure 1. ORTEP drawing of the complex 1‚BF4 (S ) 18C6). Selected
-
bond lengths (Å) and angles (deg): I(1)-C(1) 2.103(3), I(1)-O(1) 1.937-
(2), O(1)-H(1O) 0.71(4), I(1)‚‚‚O(2) 2.598(2), I(1)‚‚‚O(3) 2.910(2),
I(1)‚‚‚O(4) 3.137(2), O(1)-I(1)-C(1) 91.85(9).
References
Scheme 1a
(1) (a) Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine;
VCH: New York, 1992. (b) Zhdankin, V. V.; Stang, P. J. Chem. ReV.
2002, 102, 2523.
(2) Carmalt, C. J.; Crossley, J. G.; Knight, J. G.; Lightfoot, P.; Martin, A.;
Muldowney, M. P.; Norman, N. C.; Orpen, A. G. J. Chem. Soc., Chem.
Commun. 1994, 2367.
(3) Recently, a soluble monomeric ISB was elegantly synthesized by replacing
the intermolecular interactions with intramolecular I‚‚‚O contacts. See:
(a) Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. J. Am.
Chem. Soc. 1999, 121, 7164. (b) Macikenas, D.; Skrzypczak-Jankun, E.;
Protasiewicz, J. D. Angew. Chem., Int. Ed. 2000, 39, 2007.
(4) (a) Moriarty, R. M.; Khosrowshahi, J. S.; Prakash, O. Tetrahedron Lett.
1985, 26, 2961. (b) Kitamura, T.; Furuki, R.; Taniguchi, H.; Stang, P. J.
Tetrahedron 1992, 48, 7149.
(5) (a) Zhdankin, V. V.; Tykwinski, R.; Caple, R.; Berglund, B.; Koz’min,
A. S.; Zefirov, N. S. Tetrahedron Lett. 1988, 29, 3703. (b) Zhdankin, V.
V.; Mullikin, M.; Tykwinski, R.; Berglund, B.; Caple, R.; Zefirov, N. S.;
Koz’min, A. S. J. Org. Chem. 1989, 54, 2605.
(6) Ochiai, M. In Topics in Current Chemistry; Wirth, T., Ed.; Springer:
Berlin, 2003; Vol. 224, p 5.
(7) Richter, H. W.; Cherry, B. R.; Zook, T. D.; Koser, G. F. J. Am. Chem.
Soc. 1997, 119, 9614.
(8) The iodonium ion 1 (S ) H2O) was also assumed to be a primary
monomeric species, when [hydroxy(tosyloxy)iodo]benzene was dissolved
in water. See ref 7.
(9) (a) Ochiai, M.; Suefuji, T.; Miyamoto, K.; Tada, N.; Goto, S.; Shiro, M.;
Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 2003, 125, 769. (b)
Ochiai, M.; Miyamoto, K.; Suefuji, T.; Sakamoto, S.; Yamaguchi, K.;
Shiro, M. Angew. Chem., Int. Ed. 2003, 42, 2191.
(10) The stretching vibration of a OH ligand on iodine(III) involved in strong
hydrogen bonding appears at 2400-2450 cm-1. See: (a) Baker, G. P.;
Mann, F. G.; Sheppard, M. N.; Tetlow, A. J. J. Chem. Soc. 1965, 3721.
(b) Moss, R. A.; Vijayaraghavan, S.; Emge, T. J. Chem. Commun. 1998,
1559. (c) Moss, R. A.; Wilk, B.; Krogh-Jespersen, K.; Blair, J. T.;
Westbrook, J. D. J. Am. Chem. Soc. 1989, 111, 250.
a Conditions: (a) 1-naphthol, H2O, 0 °C to room temperature (3 h), 67%;
(b) 2,4,6-trimethylphenol, H2O, 0 °C to room temperature (3 h), 92%; (c)
thioanisole, H2O, room temperature (3 h), 98%; (d) (E)-PhC(O)CHdCHPh,
MeOH, room temperature (18 h), 72%; (e) styrene, MeOH, 0 °C (1.5 h)
then room temperature (11 h), 73%; (f) indene, Ac2O, AcOH, 16 °C (1 h),
89% (trans-8); (g) (i) indene, CH2Cl2-AcOH (2.5:1), -20 °C (1.5 h), (ii)
Ac2O, pyridine, room temperature (2 days), 68% (cis-8); (h) PhC(OTMS)d
CH2 (11), MeCN-H2O (3:1), 0 °C (1 h), 73%; (i) 1-decyne, HgO, CH2Cl2,
room temperature (3 h), 56%.
(11) The ligand exchange with MeOH is further supported by the detection of
both ion peaks [PhIOH]+ and [PhIOMe]+. For a ligand exchange on
iodine(III), see ref 6.
(12) Crystallographic data for PhI(OH)BF4‚18C6: C18H30BF4IO7, M ) 572.14,
T ) 93 K, triclinic space group P-1 (No. 2), a ) 9.409(2) Å, b ) 11.449-
(3) Å, c ) 13.198(3) Å, â ) 112.33(2)°, V ) 1142.9(5) Å3, Z ) 2, Dc )
1.662 g cm-3, µ (Mo KR) ) 14.70 cm-1. 11 705 reflections were collected;
6428 were unique. R ) 0.050, Rw ) 0.083.
(13) Koser, G. F.; Wettach, R. H. J. Org. Chem. 1976, 41, 3609.
(14) The pKa value for the hydroxy ligand in 1‚BF4- (S ) 18C6) is estimated
to be around 5, because of the low basicity of 18C6. See ref 7.
(15) (a) Zhdankin, V. V.; Tykwinski, R.; Berglund, B.; Mullikin, M.; Caple,
R.; Zefirov, N. S.; Koz’min, A. S. J. Org. Chem. 1989, 54, 2609. (b)
Sengupta, S.; Mondal, S. Tetrahedron Lett. 1999, 40, 3469.
(16) Moriarty, R. M.; Prakash, O. Org. React. 1999, 54, 273.
(17) Yoshida, M.; Nishimura, N.; Hara, S. Chem. Commun. 2002, 1014.
acid catalyst, which indicates that the highly electrophilic nature
of Zhdankin’s hydroxy-λ3-iodane 1 (S ) BF4-) is maintained in
our crown ether complex. It is noted that the complex functions as
an efficient oxidizing agent even in water, because of both the
moderate solubility and the excellent stability in water. Thus,
oxidation of phenols, 1-naphthol and 2,4,6-trimethylphenol, with
-
1‚BF4 (S ) 18C6) in water at 0 °C afforded naphthoquinone (3)
and p-quinol 4, respectively, in good yields.1 Thioanisole gave a
98% yield of the sulfoxide 5 in water at room temperature with no
evidence for formation of methyl phenyl sulfone.
JA0377899
9
J. AM. CHEM. SOC. VOL. 125, NO. 43, 2003 13007