tion in sharp contrast to previously reported TTFs containing
terminal alkyne functionalities.9,16 Compound 8 was then
subjected to a 2-fold palladium-catalyzed cross-coupling with
the bromide 9,2a employing slightly modified reaction
conditions of Hundertmark et al.,17 which provided the
OPE3-TTF cruciform 10. We have recently employed similar
conditions for synthesizing the parent OPE3 (11, Figure 2)
subjecting 10 to these conditions gave the compound 1. The
Ac groups of 1 can be removed upon treatment with HNEt2/
CHCl3 (1:1).
Single crystals of 7 were subjected to an X-ray crystal-
lographic analysis. The structure (Figure 3) reveals planarity
of the complete π-system.
Figure 2. Thiol-terminated OPE3.
with t-Bu-protected thiol end-groups.3c Addition of NaOMe
(1 equiv) increased the yield of 10 from 26% to 56%.
Moreover, we applied ultrasonification as we have previously
demonstrated its ability to promote the Sonogashira cross-
coupling.16b
One advantage of using t-Bu as protecting group is the
resistance of t-Bu-S-Ar to both strongly basic and acidic
conditions.2a Furthermore, the OPE3-TTF 10 presents a target
molecule in itself for fundamental conductivity studies, as
Kubatkin et al.2b have demonstrated that t-BuS-functionalized
wires can be physisorbed onto electrodes by a weak van der
Waals contact between the single molecule and the device.
However, in a final synthetic step, the t-BuS group can be
converted into the AcS moiety by means of AcCl/BBr3. Thus,
Figure 3. X-ray crystal structure of 7 (CCDC 294502). Drawing
made by ORTEP-II.18
UV-vis absorption spectra show that the presence of
donor groups in 10 results in a significant decrease in the
HOMO-LUMO gap relative to that of 11. The lowest energy
absorpton maxima occur at 411 nm (very broad, 3.0 eV)
and 320 nm (fine-structured, 3.9 eV) for 10 and 11,
respectively.
Cyclic voltammetry of 10 in CH2Cl2 reveals a single
irreversible oxidation (scan rate 0.1 V s-1). According to
differential pulse voltammetry, the oxidation occurs at 0.47
V vs Fc+/Fc and is likely a two-electron process. No
oxidation peaks are observed for 11 under similar conditions.
The irreversible oxidation observed in bulk solution for 10
should not be directly linked to its applicability in single-
molecule electronics where the molecule is isolated between
gold electrodes.
A computational study was performed to elucidate the
frontier orbitals of the OPE3-TTF cruciforms. Compounds
10 and 11 were geometry-optimized at the semiempirical
PM3 calculational level using the Gaussian program pack-
age.19 Frontier orbitals (Figure 4) were obtained by density
functional theory (DFT) single-point calculations at the
B3LYP/6-31+g(d,p) level. Whereas the HOMO is situated
along the wire for 11, this orbital has the strongest coef-
ficients at atoms vertically to the wire in 10, i.e., at the
extended TTF donor moiety. This observation substantiates
the rationale behind the molecular design. In contrast, the
LUMO of 10 resides mainly along the wire and resembles
to a large extent that of 11. Single-point energy calculations
on 10, 10•+, and 102+ (all in the neutral conformation)
provide first and second vertical ionization energies (IE) of
(6) For other examples of conductance switching by oxidation/reduction,
see: (a) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C.
P.; Heath, J. R. Acc. Chem. Res. 2001, 34, 433-444. (b) McCreery, R.;
Dieringer, J.; Solak, A. O.; Snyder, B.; Nowak, A. M.; McGovern, W. R.;
DuVall, S. J. Am. Chem. Soc. 2003, 125, 10748-10758. (c) Dinglasan, J.
A. M.; Bailey, M.; Park, J. B.; Dhirani, A.-A. J. Am. Chem. Soc. 2004,
126, 6491-6497. (e) Reference 2b.
(7) Klare, J. E.; Tulevski, G. S.; Sugo, K.; de Picciotto, A.; White, K.
A.; Nuckolls, C. J. Am. Chem. Soc. 2003, 125, 6030-6031.
(8) (a) Wilson, J. N.; Josowicz, M.; Wang, Y.; Bunz, U. H. F. Chem.
Commun. 2003, 2962-2963. (b) Wilson, J. N.; Bunz, U. H. F. J. Am. Chem.
Soc. 2005, 127, 4124-4125.
(9) (a) Nielsen, M. B. Synlett 2003, 1423-1426. (b) Nielsen, M. B.;
Petersen, J. C.; Thorup, N.; Jessing, M.; Andersson, A. S.; Jepsen, A. S.;
Gisselbrecht, J.-P.; Boudon, C.; Gross, M. J. Mater. Chem. 2005, 15, 2599-
2605.
(10) For synthesis and characterization of the parent benzene-extended
TTF, see: Salle, M.; Belyasmine, A.; Gorgues, A.; Jubault, M.; Soyer, N.
Tetrahedron Lett. 1991, 32, 2897-2900.
(11) (a) Bryce, M. R. AdV. Mater. 1999, 11, 11-23. (b) Nielsen, M. B.;
Lomholt, C.; Becher, J. Chem. Soc. ReV. 2000, 29, 153-164. (c) Bryce,
M. R. J. Mater. Chem. 2000, 10, 589-598. (d) Segura, J. L.; Mart´ın, N.
Angew. Chem., Int. Ed. 2001, 40, 1372-1409.
(12) Zhang, Q.; Shi, C.; Zhang, H.-R.; Wang, K. K. J. Org. Chem. 2000,
65, 7977-7983.
(13) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,
16, 4467-4470.
(14) For a crystal structure of the i-Pr3Si derivative, see: Nicolaisen,
B.; Bond, A. D.; Nielsen, M. B. Acta Crystallogr. 2004, E60, o784-o785.
(15) Sato, M.; Gonnella, N. C.; Cava, M. P. J. Org. Chem. 1979, 44,
930-934.
(16) (a) Nielsen. M. B.; Gisselbrecht, J.-P.; Thorup, N.; Piotto, S. P.;
Boudon, C.; Gross, M. Tetrahedron Lett. 2003, 44, 6721-6723. (b)
Andersson, A. S.; Qvortrup, K.; Torbensen, E. R.; Mayer, J.-P.; Gisselbrecht,
J.-P.; Boudon, C.; Gross, M.; Kadziola, A.; Kilså, K.; Nielsen, M. B. Eur.
J. Org. Chem. 2005, 3660-3671.
(17) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C. Org.
Lett. 2000, 2, 1729-1731.
(18) ORTEP-II. A Fortran Thermal-Ellipsoid Plot Program. Report
ORNL-5138. Johnson, C. K. Oak Ridge National Laboratory, Oak Ridge,
TN 1976.
Org. Lett., Vol. 8, No. 6, 2006
1175