Notes
Journal of Natural Products, 2006, Vol. 69, No. 3 431
(7) (a) Chatterjee, S. S.; Kondratskaya, E. L.; Krishtal, O. A. Pharma-
copsychiatry 2003, 36 (Suppl. 1), S68-S77. (b) Ivic, L.; Sands, T.
T. J.; Fishkin, N.; Nakanishi, K.; Kriegstein, A. R.; Stromgaard, K.
J. Biol. Chem. 2003, 278, 49279-49285. (c) Jaracz, S.; Nakanishi,
K.; Jensen, A. A.; Stromgaard, K. Chem. Eur. J. 2004, 10, 1507-
1518. (d) Kondratskaya, E. L.; Betz, H.; Krishtal, O. A.; Laube, B.
Neuropharmacology 2005, 49, 945-951.
pressure gauge and gas assembly were attached. The reactor was sealed,
charged and vented with 3 × 400 psi with H2, and recharged to 600
psi H2. The reaction mixture was stirred at room temperature for 18 h,
and then the reactor was vented. The solution was filtered through a
pad of Celite and concentrated in vacuo. The residue was dissolved in
1 mL of MeCN, and DMAP (12.0 mg, 0.096 mmol) and 0.1 mL of
water were added. The reaction mixture was stirred 80 °C in sealed
tube for 4 days and then quenched by addition of 2 mL of 1 M HCl.
The aqueous layer was extracted with 3 × 2 mL of EtOAc, and the
combined organic layers were washed with brine, dried over sodium
sulfate, and concentrated in vacuo. Purification by flash chromatography
on silica gel (eluted with 2:1 EtOAc/hexane) afforded GM (7.9 mg,
0.019 mmol, 77% yield over two steps), whose spectral data matched
those of the natural compound.4a
(8) TBPS: 35S-tert-butylbicyclophosphorothionate. Edgar, P. P.; Schwartz,
R. D. J. Neurosci. 1990, 10, 603-612.
(9) Schmitt, H. P. Med. Hypothesis 2005, 65, 259-265.
(10) Synthetic studies leading to formation of GM were reported
previously: (a) Weinges, K.; Rummler, M.; Schick, H. Liebigs Ann.
Chem. 1993, 1023-1027. (b) Maruyama, M.; Terahara, A.; Naka-
daira, Y.; Woods, M. C.; Takagi, Y.; Nakanishi, K. Tetrahedron Lett.
1967, 8, 315-319.
(11) Maruyama, M.; Terahara, A.; Nakanishi, K. Sci. Rep. Tohoku UniV.
1967, 50, 92-99.
(12) Middleton, W. J. J. Org. Chem. 1975, 40, 574-578.
(13) GA to GL conversion using POCl3/pyridine was previously re-
ported: Weinges, K.; Ru¨mmler, M.; H. Schick, H.; Schilling, G.
Leibigs Ann. Chem. 1993, 287-291.
Acknowledgment. We are grateful to Pharmanex for a generous
gift of Ginkgo biloba leaf extract. This work was financially supported
by NIH (GM-MH068817).
References and Notes
(14) Attempts to achieve the desired hydrogenation using Pd/C failed.
Upon screening several hydrogenation catalysts, Crabtree’s catalyst
was identified as the most efficient. For a review of Crabtree’s
catalysts see: Grabtree, R. H. Acc. Chem. Res. 1990, 23, 95-101.
(15) Further proof of stereochemistry is as follows: the 2D NOESY cross-
peak volumes were analyzed using a NOE ratio method upon which
the volume of the Me-14/H-12 cross-peak yielded a distance of 0.35
nm, consistent with the cis orientation of H-3 and H-14. The cis
orientation of H-2 and H-3 was supported by NOESY volume
analysis. The cross-peak volume between H-2 and H-3 was similar
in magnitude to the peak volume for several other cis-oriented
protons, such as between the H-6 and H-7R protons and between
the H-2 and H-1R protons. For the NOE ratio method see: Newhaus,
D.; Williamson, M. The Nuclear OVerhauser Effect in Structural and
Conformational Analysis, 2nd ed.; Wiley-VCH: New York, 2000.
(16) GB, however, was successfully converted into GK, using a DAST-
mediated protocol, Scheme 2.
(17) Somekh, L.; Shanzer, A. J. Org. Chem. 1982, 48, 907-908.
(18) Jaracz, S.; Malik, S.; Nakanishi, K. Phytochemistry 2004, 65, 2897-
2902.
(19) The DAST-mediated procedure appears to be quite general for the
dehydration of ginkgolides and ginkgolide derivatives, as 10-benzyl-
GB and 10-methyl-GC underwent a clean elimination of the OH-3
group, yielding the corresponding 3,14-unsaturated products in 90
and 85% yields, respectively.
(1) Stromgaard, K.; Vogensen, S. B.; Nakanishi, K. In Encyclopedia of
Dietary Supplements; Coates, P. M., Ed.; Marcel Dekker Inc.: New
York, 2005; pp 249-257.
(2) (a) van Dongen M. C. J. M.; van Rossum, E.; Knipschild, P. In
Ginkgo biloba; van Beek, T. A., Ed.; Harwood Academic Publish-
ers: Australia, 2000; Chapter 22, pp 385-442. (b) Crews, W. D.,
Jr.; Harrison, D. W.; Griffin, M. L.; Falwell, K. D.; Crist, T.; Longest,
L.; Hehemann, L.; Rey, S. T. HerbalGram 2005, 67, 43-62.
(3) (a) Guderman, T.; Schoneberg, T.; Schultz, G. Annu. ReV. Neurosci.
1997, 20, 399-427. (b) Ito, M, Physiol. ReV. 2001, 81, 1143-1195.
(c) El Far, O.; Betz, H. Biochem. J. 2002, 365, 329-336. (d)
Debanne, D.; Daoudal, G.; Sourdet, V.; Russier, M. J. Physiol. 2004,
97, 403-414. (e) Malbon, C. C. Nature ReV. Mol. Cell Biol. 2005,
6, 689-701. (f) Lujan, R.; Shigemoto, R.; Lopez-Bendito, G.
Neuroscience 2005, 130, 567-580.
(4) (a) van Beek, T. A. Bioorg. Med. Chem. 2005, 13, 5001-5012. (b)
GK and GL were identified as native ginkgolides present in trace
amounts in the terpene trilactone fraction of Ginkgo biloba leaf
extract: Wang, Y.; Sheng, L. S.; Lou, F. C. Acta Pharmcol. Sin.
2001, 31, 606-608.
(5) (a) Nakanishi, K. Bioorg. Med. Chem. 2005, 13, 4983-5000. (b)
Stromgaard, K.; Nakanishi, K. Angew. Chem., Int. Ed. 2004, 43,
1640-1658.
(6) (a) Hosford, D.; Mencia-Huerta, J. M.; Page, C.; Braquet, P.
Phytotherapy Res. 1988, 2, 1-24. (b) Hu, L.; Chen, Z.; Xie, Y.;
Jiang, Y.; Zhen, H. Bioorg. Med. Chem. 2000, 8, 1515-1521. (c)
Vogensen, S. B.; Stromgaard, K.; Shindou, H.; Jaracz, S.; Suehiro,
M.; Ishii, S.; Shimizu, T.; Nakanishi, K. J. Med. Chem. 2003, 46,
601-608. (d) Zhu, W.; Chen, G.; Hu, L.; Luo, X.; Gui, C.; Luo, C.;
Puah, C. M.; Chen, K.; Jiang, H. Bioorg. Med. Chem. 2005, 13, 313-
322.
(20) All ginkgolides can be selectively isolated from the Ginkgo biloba
leaf extract in one step: Nakanishi, K.; Jaracz, S.; Malik, S.; Ishii,
H.; Dzyuba, S. V. PCT Int. Appl. WO 2005046829, 2005, 61 pp.
NP050403I