The polyene systems, with few or no aromatic rings, are
the most effective π-conjugated bridges for achieving large
molecular first hyperpolarizabilities (â).3 The conformation
of all-trans polyene bridges can be preserved by incorporating
part or all of their methine skeletons into single or fused
aliphatic rings.4 This approach has been employed by
numerous groups to effectively improve both thermal and
photochemical stability of polyene-based chromophores
without compromising their NLO properties. Typical ex-
amples are the ring-locked phenyltetraene-based “push-pull”
compounds, known as the CLD type of chromophores (Chart
1).5 The ring-locked structure of these compounds is based
developed efficient side-chain dendronized polymer, the
center of the phenylthiophene stilbene bridge can be func-
tionalized with a dendron, through the process of Diels-
Alder “click chemistry”, to provide better site isolation for
poling.8 As a result, very large r33 values (up to 110 pm/V
at 1.31 µm) can be achieved.
To improve the performance of these organic NLO
materials further, the most efficient polyenic dyes are ideal
because of their large nonlinearities. However, several
parameters concerning synthesis and control of the molecular
shape of these chromophores should be addressed before they
can be applied for general use. A majority of the double
bonds on the polyene chain, except the one embedded in
the isophorone ring structure, are often kept as unlocked to
avoid twisting of the conjugating backbone and to provide
synthetic convenience. Accordingly, the dialkylaminophe-
nyltrienal intermediates and the obtained CLD-type chro-
mophores are often a mixture of trans and cis isomers.
Attempts to purify these isomers through column chroma-
tography for higher NLO activity are proven to be very
difficult. In the best case reported, CLD-4, an all-trans
n-hexyl-substituted analogue of CLD-1, can only be syn-
thesized with an overall yield of <1% because of the low
reactivity of the hexylated enones and aminophenylenone
intermediates.5d
Chart 1. Typical Examples of
Alkylaminophenyltetraene-Based NLO Chromophores
To solve this problem, we have developed a facile
synthetic route to generate all-trans dialkylaminophenyltet-
raene chromophores. Both sides of the π-conjugated bridge
of these chromophores can be protected through an iso-
phorone ring and a fluoro-dendron. A very strong acceptor,
2-(3-cyano-4-methyl-5-phenyl-5-trifluoromethyl-5H-furan-2-
ylidene)-malononitrile (CF3-TCF), can also be functional-
ized on these bridges to significantly enhance the molecular
nonlinearity of these chromophores.9 The poled guest-host
or cross-linked polymers using these chromophores showed
exceptionally high r33 values (208 and 262 pm/V) at 1.31
µm.
To obtain the target aminophenyltrienal donor bridges
(compound 6), the main challenge is to improve the reactivity
of the quite inert enones (such as compound 2 in Scheme 1)
and aminophenylenones (compound 3) which have an alkyl
group substituted on the isophorone ring. We found that
sodium ethoxide is quite effective in improving the Knoev-
on an isophorone-derived six-membered ring to furnish the
central core of D-π-A chromophores and to provide a nearly
coplanar conjugation and prolate pseudo-ellipsoidal shape.
To prevent close packing of such extended dipolar structures
and improve their solubility, bulky tert-butyldimethylsilyl
(TBDMS) groups and asymmetric substituents have been
used to functionalize on either the donor or the acceptor end
of the chromophores. As a result of these shape modifica-
tions, relatively high electrooptic (EO) coefficients (r33
around 40-70 pm/V measured at the wavelengths of 1.3
and 1.55 µm) have been achieved from poled polymeric
composites using these polyenic chromophores as dopants.
Recently, the results of using a Monte Carlo simulation6
and nanoscale tailoring of the size, shape, or conformation
of NLO polymers and dendrimers7 all show that the ideal
shape of chromophores is spherical. For example, in a newly
(6) (a) Robinson, B. H.; Dalton, L. R. J. Phys. Chem. A 2000, 104, 4785.
(b) Dalton, L. R.; Steier, W. H.; Robinson, B. H.; Zhang, C.; Ren, A.;
Garner, S.; Chen, A.; Londergan, T.; Irwin, L.; Carlson, B.; Fifield, L.;
Phelan, G.; Kincaid, C.; Amend, J.; Jen, A. K-Y. J. Mater. Chem. 1999, 9,
19.
(7) (a) Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller,
M.; Sassa, T.; Dalton, L. R.; Jen, A. K-Y. AdV. Funct. Mater. 2002, 12,
565. (b) Luo, J.; Liu, S.; Haller, M.; Lu, L.; Ma, H.; Jen, A. K-Y. AdV.
Mater. 2002, 14, 1763. (c) Luo, J.; Haller, M.; Li, H.; Tang, H. Z.; Jen, A.
K-Y.; Jakka, K.; Chou, C. H.; Shu, C. F. Macromolecules 2004, 37, 248.
(d) Luo, J.; Ma, H.; Haller, M.; Jen, A. K-Y.; Barto, R. R. Chem. Commun.
2002, 888. (e) Ma, H.; Chen, B.; Sassa, T.; Dalton, L. R.; Jen, A. K-Y. J.
Am. Chem. Soc. 2001, 123, 986. (f) Luo, J.; Haller, M.; Li, H.; Kim, T.-D.;
Jen, A. K-Y. AdV. Mater. 2003, 15, 1635. (g) Luo, J.; Haller, M.; Ma, H.;
Liu, S.; Kim, T.-D.; Tian, Y.; Chen, B.; Jang, S.-H.; Dalton, L. R.; Jen, A.
K-Y. J. Phys. Chem. B 2004, 108, 8523.
(3) (a) Marder, S. R.; Cheng, L. T.; Tiemann, B. G.; Friedli, A. C.;
Blanchard-Desce, M.; Perry, J. W.; Skindhoej, J. Science 1994, 263, 511.
(b) Marder, S. R.; Perry, J. W.; Bourhill, G.; Gorman, C. B.; Tiemann, B.
G.; Mansour, K. Science 1993, 261, 186.
(4) (a) Ermer, S.; Lovejoy, S. M.; Leung, D. S.; Warren, H.; Moylan, C.
R.; Twieg, R. J. Chem. Mater. 1997, 9, 1437. (b) Staub, K.; Levina, G. A.;
Barlow, S.; Kowalczyk, T. C.; Lackritz, H. S.; Barzoukas, M.; Fort, A.;
Marder, S. R. J. Mater. Chem. 2003, 13, 825. (c) Shu, C.-F.; Tsai, W.-J.;
Jen, A. K-Y. Tetrahedron Lett. 1996, 37, 7055.
(5) (a) Zhang, C.; Dalton, L. R.; Oh, M.-C.; Zhang, H.; Steier, W. H.
Chem. Mater. 2001, 13, 3043. (b) Zhang, C.; Ren, A. S.; Wang, F.; Zhu,
J.; Dalton, L. R.; Woodford, J. N.; Wang, C. H. Chem. Mater. 1999, 11,
1966. (c) Liakatas, I.; Cai, C.; Bosch, M.; Jager, M.; Bosshard, Ch.; Gunter,
P.; Zhang, C.; Dalton, L. R. Appl. Phys. Lett. 2000, 76, 1368. (d) Zhang,
C.; Wang, C.; Dalton, L. R.; Zhang, H.; Steier, W. H. Macromolecules
2001, 34, 235. (e) He, M.; Leslie, T.; Garner, S.; DeRosa, M.; Cites, J. J.
Phys. Chem. B 2004, 108, 8731. (f) He, M.; Leslie, T. M.; Sinicropi, J. A.;
Garner, S. M.; Reed, L. D. Chem. Mater. 2002, 14, 4669.
(8) Kang, J.-W.; Kim, T.-D.; Luo, J.; Haller, M.; Jen, A. K-Y. Appl.
Phys. Lett. 2005, 87, 071109/1-071109/3.
(9) Liu, S.; Haller, M. A.; Ma, H.; Dalton, L. R.; Jang, S.-H.; Jen, A.
K-Y. AdV. Mater. 2003, 15, 603.
1388
Org. Lett., Vol. 8, No. 7, 2006