Organic Letters
Letter
Eds.; Wiley-VCH: Weinheim, Germany, 2010. (d) Hartwig, J. F.
Organotransition Metal Chemistry: From Bonding to Catalysis;
University Science Books: Sausalito, CA, 2010;. (e) Haas, D.;
Hammann, J. M.; Greiner, R.; Knochel, P. ACS Catal. 2016, 6, 1540−
1552.
Hashimoto, S.; Ishizuka, K.; Nakamura, M. J. Am. Chem. Soc. 2009,
131, 11949−11963. (d) Kuzmina, O. M.; Steib, A. K.; Markiewicz, J.
T.; Flubacher, D.; Knochel, P. Angew. Chem., Int. Ed. 2013, 52, 4945−
4949. (e) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014,
509, 299−309.
(2) (a) Bernhardt, S.; Manolikakes, G.; Kunz, T.; Knochel, P. Angew.
Chem., Int. Ed. 2011, 50, 9205−9209. (b) Stathakis, C. I.; Bernhardt,
S.; Quint, V.; Knochel, P. Angew. Chem., Int. Ed. 2012, 51, 9428−
9432. (c) Colombe, J. R.; Bernhardt, S.; Stathakis, C.; Buchwald, S. L.;
Knochel, P. Org. Lett. 2013, 15, 5754−5757. (d) Manolikakes, S. M.;
Ellwart, M.; Stathakis, C. I.; Knochel, P. Chem. - Eur. J. 2014, 20,
12289−12297. (e) Ellwart, M.; Knochel, P. Angew. Chem., Int. Ed.
(9) Triflates and nonaflates were equally efficient substrates in this
nickel-catalyzed cross-coupling. These sulfonates afforded the
corresponding products in high yields.
(10) Babinski, D.; Soltani, O.; Frantz, D. E. Org. Lett. 2008, 10,
2901−2904.
(11) The (E)- and the (Z)-isomers were verified by NOE-NMR. See
2015, 54, 10662−10665. (f) Chen, Y.-H.; Tullmann, C. P.; Ellwart,
̈
M.; Knochel, P. Angew. Chem., Int. Ed. 2017, 56, 9236−9239.
(3) (a) Hammann, J. M.; Lutter, F. H.; Haas, D.; Knochel, P. Angew.
Chem., Int. Ed. 2017, 56, 1082−1086. (b) Hammann, J. M.; Thomas,
L.; Chen, Y.-H.; Haas, D.; Knochel, P. Org. Lett. 2017, 19, 3847−
3850. (c) Hofmayer, M. S.; Hammann, J. M.; Lutter, F. H.; Knochel,
P. Synthesis 2017, 49, 3925−3930. (d) Chen, Y.-H.; Graßl, S.;
Knochel, P. Angew. Chem., Int. Ed. 2018, 57, 1108−1111. (e) Li, J.;
Knochel, P. Angew. Chem., Int. Ed. 2018, 57, 11436−11440.
(f) Thomas, L.; Lutter, F. H.; Hofmayer, M. S.; Karaghiosoff, K.;
Knochel, P. Org. Lett. 2018, 20, 2441−2444. (g) Tullmann, C. P.;
̈
Chen, Y.-H.; Schuster, R. J.; Knochel, P. Org. Lett. 2018, 20, 4601−
4605.
(4) (a) For a review summarizing the benefits of nonaflates and
̈
triflates, see: Hogermeier, J.; Reissig, H.-U. Adv. Synth. Catal. 2009,
351, 2747−2763. (b) Fugami, K.; Oshima, K.; Utimoto, K. Chem.
Lett. 1987, 16, 2203−2206. (c) Sengupta, S.; Leite, M.; Raslan, D. S.;
Quesnelle, C.; Snieckus, V. J. Org. Chem. 1992, 57, 4066−4068.
(d) Ritter, K. Synthesis 1993, 735−762. (e) Riguet, E.; Alami, M.;
Cahiez, G. Tetrahedron Lett. 1997, 38, 4397−4400. (f) Littke, A. F.;
Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020−4028.
(g) Fu
612. (h) Fu
Chem. Soc. 2002, 124, 13856−13863. (i) Scheiper, B.; Bonnekessel,
M.; Krause, H.; Fu
̈
rstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2002, 41, 609−
́
rstner, A.; Leitner, A.; Mendez, M.; Krause, H. J. Am.
̈
̈
rstner, A. J. Org. Chem. 2004, 69, 3943−3949.
(j) Seganish, W. M.; DeShong, P. J. J. Org. Chem. 2004, 69, 1137−
1143. (k) Proutiere, F.; Schoenebeck, F. Angew. Chem., Int. Ed. 2011,
́
50, 8192−8195. (l) Vila, C.; Hornillos, V.; Giannerini, M.; Fananas-
̃
Mastral, M.; Feringa, B. L. Chem. - Eur. J. 2014, 20, 13078−13083.
(5) (a) For a recent review, see: Rosen, B. M.; Quasdorf, K. W.;
Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V.
Chem. Rev. 2011, 111, 1346−1416. (b) Koch, K.; Chambers, R. J.;
Biggers, M. S. Synlett 1994, 347−348. (c) Quesnelle, C. A.; Familoni,
O. B.; Snieckus, V. Synlett 1994, 349−350. (d) Klement, I.;
̈
Rottlander, M.; Tucker, C. E.; Majid, T. N.; Knochel, P.; Venegas,
̈
P.; Cahiez, G. Tetrahedron 1996, 52, 7201−7220. (e) Rottlander, M.;
̈
Palmer, N.; Knochel, P. Synlett 1996, 1996, 573−575. (f) Rottlander,
M.; Knochel, P. J. J. Org. Chem. 1998, 63, 203−208. (g) Gavryushin,
A.; Kofink, C.; Manolikakes, G.; Knochel, P. Org. Lett. 2005, 7, 4871−
4874. (h) Gavryushin, A.; Kofink, C.; Manolikakes, G.; Knochel, P.
Tetrahedron 2006, 62, 7521−7533. (i) Melzig, L.; Gavryushin, A.;
Knochel, P. Org. Lett. 2007, 9, 5529−5532. (j) Sase, S.; Jaric, M.;
Metzger, A.; Malakhov, V.; Knochel, P. J. Org. Chem. 2008, 73, 7380−
7382. (k) Monzon, G.; Knochel, P. Synlett 2010, 304−308.
(l) Pitchaiah, A.; Hwang, I. T.; Hwang, J.-S.; Kim, H.; Lee, K.-I.
Synthesis 2012, 44, 1631−1636. (m) Mastalir, M.; Kirchner, K.
Monatsh. Chem. 2017, 148, 105−109. (n) Quesnelle, C. A.; Snieckus,
V. Synthesis 2018, 50, 4395−4412.
(6) NMR experiments and crystallographic data showed that the
structure of these zinc reagents is RZnX·Mg(OPiv)2·LiCl. However,
for the sake of clarity, we have named these reagents RZnOPiv; see:
́
́
Hernan-Gomez, A.; Herd, E.; Hevia, E.; Kennedy, A. R.; Knochel, P.;
Koszinowski, K.; Manolikakes, S. M.; Mulvey, R. E.; Schnegelsberg, C.
Angew. Chem., Int. Ed. 2014, 53, 2706−2710.
(7) (a) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N.
J. Am. Chem. Soc. 2002, 124, 4222−4223. (b) Korn, T. J.; Knochel, P.
Angew. Chem., Int. Ed. 2005, 44, 2947−2951. (c) Hatakeyama, T.;
D
Org. Lett. XXXX, XXX, XXX−XXX