K. Kawai et al.
Bull. Chem. Soc. Jpn. Vol. 79, No. 2 (2006)
315
accomplished quickly, within 20 micro seconds after an elec-
tron pulse during pulse radiolysis for all the doubly Py-modi-
fied ODNs studied here. The results clearly demonstrate that
the minor groove of DNA offers a good space for the forma-
ꢁþ
tion of Py2
.
·+
·+
·+
Py2
·+
DNA dynamics
DNA dynamics
We thank the members of the Radiation Laboratory of ISIR
(SANKEN), Osaka Univ. for running the linear accelerator,
and Prof. K. Nakatani and Mr. G. Hayashi for the measure-
ment of MALDI-TOF mass spectra. This work has been partly
supported by a Grant-in-Aid for Scientific Research (Project
No. 17105005, Priority Area (417), 21st Century COE Re-
search and others) from the Ministry of Education, Culture,
Sports, Science and Technology (MEXT) of the Japanese Gov-
ernment.
ꢁþ
Scheme 3. DNA dynamics and the formation of Py2
.
py1
0.04
0.03
0.02
0.01
0.00
py2
py3
py4
pyr2
m2
References
1
A. P. McCaffrey, L. Meuse, T.-T. T. Pham, D. S. Conklin,
G. J. Hannon, M. A. Kay, Nature 2002, 418, 38.
V. A. Soldatenkov, S. Chasovskikh, V. N. Potaman, I.
2
Time
Trofimova, M. E. Smulson, A. Dritschilo, J. Biol. Chem. 2002,
277, 665.
3 E. Zazopoulos, E. Lalli, D. M. Stocco, P. Sassone-Corsi,
Nature 1997, 390, 311.
4 P. Catasti, X. Chen, R. K. Moyzis, E. M. Bradbury, G.
Gupta, J. Mol. Biol. 1996, 264, 534.
0.015
0.010
0.005
1300 1400 1500 1600 1700 1800
Wavelength (nm)
5
D. B. Roth, P. B. Nakajima, J. P. Menetski, M. J. Bosma,
M. Gellert, Cell 1992, 69, 41.
K. Kawai, K. Miyamoto, S. Tojo, T. Majima, J. Am. Chem.
Soc. 2003, 125, 912.
0
2
4
6
8
10
Time (µs)
6
ꢁþ
Fig. 2. Time profiles of the transient absorption of Py2
monitored at 1550 nm during pulse radiolysis of doubly
Py-modified ODNs in Ar-saturated D2O solution in the
presence of 10 mM K2S2O8, 100 mM t-BuOH, 20 mM
Na phosphate buffer (pH 7.0), at a total strand concentra-
tion of 200 mM (100 mM in the case of m2). The inset
shows the transient absorption spectra for py2 (total strand
conc. of 100 mM) observed at 2, 5, 10, 20, and 50 ms after
the electron pulse during the pulse radiolysis.
7 K. Kawai, H. Yoshida, T. Takada, S. Tojo, T. Majima,
J. Phys. Chem. B 2004, 108, 13547.
8
P. B. Dervan, E. J. Fechter, B. S. Edelson, J. M.
Gottesfeldr, in Pseudo-Peptides in Drug Discovery, Wiley-VCH,
Weinheim, 2004, pp. 121–152.
9 M. Wang, G. L. Silva, B. A. Armitage, J. Am. Chem. Soc.
2000, 122, 9977.
10 M. Eriksson, S. K. Kim, S. Sen, A. Graslund, B. Jernstrom,
B. Norden, J. Am. Chem. Soc. 1993, 115, 1639.
11 H. Sugiyama, C. Y. Lian, M. Isomura, I. Saito, A. H. J.
Wang, Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14405.
12 J. Oxelbark, S. Claeson, Tetrahedron: Asymmetry 2002,
13, 2235.
at the 20-sugar posiꢁtiþon of the nucleoside (PyU), where the for-
mation rate of Py2 strongly depended on the number of in-
tervening base-pairs between the two PyUs and no formation
ꢁþ
of Py2 was observed for ODNs with more than three inter-
13 K. Nakatani, C. Dohno, I. Saito, J. Am. Chem. Soc. 2000,
122, 5893.
14 A. Adib, P. F. Potier, S. Doronina, I. Huc, J.-P. Behr,
Tetrahedron Lett. 1997, 38, 2989.
15 K. Kawai, T. Takada, S. Tojo, N. Ichinose, T. Majima,
J. Am. Chem. Soc. 2001, 123, 12688.
16 T. Takada, K. Kawai, S. Tojo, T. Majima, J. Phys. Chem. B
2003, 107, 14052.
17 T. L. Netzel, M. Zhao, K. Nafisi, J. Headrick, M. S.
Sigman, B. E. Eaton, J. Am. Chem. Soc. 1995, 117, 9119.
18 M. Manoharan, K. L. Tivel, M. Zhao, K. Nafisi, T. L.
Netzel, J. Phys. Chem. 1995, 99, 17461.
19 N. Amann, E. Pandurski, T. Fiebig, H.-A. Wagenknecht,
Angew. Chem., Int. Ed. 2002, 41, 2978.
vening A–T base pairs between the two PyUs in the time scale
of ꢅ1 ms. This is probably because larger conformational
changes are needed for PyU-modified ODNs to bring two Pys
in contact in the minor groove of DNA. The change of inter-
vening A–T base pairs to G–C base pairs between two Pys
(py2/pyr2) leads to a slight decrease in the formation rate
of Py2ꢁþ. Since G–C base pairs are known to have a more rigid
structure, as can be seen from the higher Tm value for pyꢁrþ2
compared to that for py2, the slower formation rate of Py2
can be interpreted in terms of the reduced flexibility of DNA.
Since the formation of Py2ꢁþ was not obvious in the case of the
singly Py-modified m2, the observed results are accounted for
by intramolecular processes as shown in Scheme 3.
In conclusion, to test the plausibility of the formation of
ꢁþ
20 R. Huber, T. Fiebig, H.-A. Wagenknecht, Chem. Commun.
2003, 1878.
21 K. Kobayashi, S. Tagawa, J. Am. Chem. Soc. 2003, 125,
10213.
Py2 at the minor groove of DNA, we synthesized a nucleo-
side derivative possessing a Py group on guanine N2 to arrange
ꢁþ
Py at the minor groove of DNA. The formation of Py2 was