2068
G. Rinaudo et al. / Tetrahedron Letters 47 (2006) 2065–2068
572; (c) Qiu, X.-L.; Meng, W.-D.; Qing, F.-L. Tetrahedron
Ts
Ts
N
BnNH2 (2 eq)
2004, 60, 6711–6745.
HN
CO2Et
4. Davoli, P.; Forni, A.; Franciosi, C.; Moretti, I.; Prati, F.
Tetrahedron: Asymmetry 1999, 10, 2361–2371.
F3C
NBn
CH2Cl2
reflux, 24 h
(74%)
F3C
CO2Et
H
´
´
5. Crousse, B.; Narizuka, S.; Bonnet-Delpon, D.; Begue, J.-P
Synlett 2001, 679–681.
trans-4b
Scheme 6.
anti-7b
6. Asymmetric Fluoroorganic Chemistry: Synthesis, Applica-
tions, and Future Directions; Ramachandran, P. V., Ed.;
ACS Books, American Chemical Society: Washington,
DC, 2000.
7. (a) Katagiri, T.; Takahashi, M.; Fujiwara, Y.; Ihara, H.;
Uneyama, K. J. Org. Chem. 1999, 64, 7323–7329; (b)
Yamauchi, Y.; Kawate, T.; Katagiri, T.; Uneyama, K.
Tetrahedron 2003, 59, 9839–9847; (c) Soloshonok, V. A.;
Avilov, D. V.; Kukhar, V. P.; Van Meervelt, L.; Mis-
chenko, N. Tetrahedron Lett. 1997, 38, 4671–4674.
8. For a recent review see: Hu, X. E. Tetrahedron 2004, 60,
2701–2743.
S
Ts
Ts
CO2Et
Hα
HN
F3C
S-K+
EtO
(1.2 eq)
N
S
OEt
CH3CN/H2O
r.t., 8 h
F3C
CO2Et
S
(66%)
10 (58/42)
9. Hanessian, S.; Moitessier, N.; Cantin, L.-D. Tetrahedron
2001, 57, 6885–6900.
Scheme 7.
10. For competitive attack of nucleophiles at carbonyl versus
ring carbon see: (a) Hassner, A.; Kascheres, A. Tetra-
hedron Lett. 1970, 11, 4623–4626; (b) Dauban, P.; Dubois,
L.; Tran Huu Dau, M. E.; Dodd, R. H. J. Org. Chem.
1995, 60, 2035–2043.
In this study of ring opening of trifluoromethyl aziridine
carboxylates, we have found conditions to circumvent
their low reactivity towards nucleophiles. We could
demonstrate that after their activation by a sulfonyl
N-substituent, trifluoromethyl aziridine carboxylates
could undergo a nucleophilic ring opening without any
Lewis acid catalysis. The ring opening reaction with
amino-containing nucleophiles proceeded in good yield
and with a total regio- and diastereoselectivity to pro-
vide the corresponding trifluoromethyl-containing
diamino esters. This is a good alternative to the harsh
conditions hitherto required, which could be suitable
to a wider range of nucleophiles.
11. Meguro, M.; Yamamoto, Y. Heterocycles 1996, 43, 2473–
2482.
12. Typical procedure for the synthesis of syn-ethyl 2-benz-
ylamino-4,4,4-trifluoro-3-(4-methylphenyl)sulfonylamino-
butanoate (syn-7b): To a stirred solution of the aziridine
(167 mg, 0.5 mmol) in CH2Cl2 (2 mL), BnNH2 (0.11 mL,
1.0 mmol) was added at rt. The reaction mixture was then
stirred at reflux of CH2Cl2 for 24 h. After dilution with
CH2Cl2 (100 mL), the mixture was washed with water
(50 mL) and brine (50 mL) and then dried on MgSO4.
After filtration and evaporation of the solvent, the crude
product was purified by flash chromatography on silica gel
(petroleum ether/AcOEt = 2/1) to give a colourless solid
(78% yield): mp: 77 °C. IR (neat) 3330, 3263, 1739 cmÀ1
.
3
1H NMR (CDCl3) d 1.30 (t, 3H, J = 7.2 Hz), 2.4 (br s,
3
Acknowledgements
1H), 2.42 (s, 3H), 3.62 (d, 1H, J = 2.1 Hz), 3.77 (d, 1H,
3J = 14.0 Hz), 3.78 (d, 1H, 3J = 14.0 Hz), 4.16 (dq, 1H,
2J = 10.7 Hz, 3J = 7.2 Hz), 4.17 (dq, 1H, 2J = 10.7 Hz,
3J = 7.2 Hz), 4.37 (m, 1H), 5.8 (br s, 1H), 7.23–7.37 (m,
7H), 7.70–7.76 (m, 2H). 13C NMR (CDCl3) d 13.8, 21.3,
`
We gratefully thank Michele Ourevitch (CNRS Biocis
UMR 8076, Univ. Paris-Sud) for 2D NMR experiments
and Patrick Herson (Laboratoire de Chimie Inorga-
nique et Materiaux Moleculaires, UMR CNRS 7071,
2
52.6, 55.8 (q, JCF = 31 Hz), 58.0, 62.5, 123.3 (q,
1JCF = 275 Hz), 126.9, 127.3, 128.1, 128.4, 129.4, 137.5,
138.6, 143.6, 170.4. 19F NMR (CDCl3) d À73.6 (d,
3JFH = 7 Hz). Anal. Calcd for C20H23F3N2O4S: C,
54.05%; H, 5.22%; N, 6.30%. Found: C, 54.02%; H,
5.27%; N, 6.24%.
´
Universite Pierre et Marie Curie) for X-ray crystallo-
graphic experiments. We also thank the European Com-
munity for the financial support (RTN Contract No.:
HPRN-CT-2002-00181) and research fellowship (G.R.).
´
´
13. (a) Avenoza, A.; Busto, J. H.; Jimenez-Oses, G.; Pere-
grina, J. M. J. Org. Chem. 2005, 70, 5721–5724; (b) Jiang,
Z.-X.; Qing, F.-L. J. Org. Chem. 2004, 69, 5486–5489; (c)
References and notes
´
´
Begue, J.-P.; Benayoud, F.; Bonnet-Delpon, D. J. Org.
Chem. 1995, 60, 5029–5036.
1. For a general review on aziridine chemistry see: (a)
Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599–
619; (b) McCoull, W.; Davis, F. A. Synthesis 2000, 10,
1347–1365.
14. (a) Allen, A. D.; Tidwell, T. T. In Advances in Carbocation
Chemistry; Creary, X., Ed.; JAI Press: Greewich, Con-
necticut, 1989; pp 1–44; (b) Creary, X. Chem. Rev. 1991,
91, 1625–1678.
15. Crystallographic data (excluding structure factors) for
compound syn-7b have been deposited with the Cam-
bridge Crystallographic Data Centre as supplementary
publication number CCDC 291307. Copies of the data
can be obtained, free of charge, on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0)
1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].
16. For a review on xanthate chemistry see: Zard, S. Z.
Angew. Chem., Int. Ed. 1997, 36, 672–685.
´
´
2. (a) Begue, J. P.; Bonnet-Delpon, D. Chimie Bioorganique
et Me´dicinale du Fluor; EDP Sciences/CNRS Editions:
Paris, 2005; (b) Biomedical Frontiers of Fluorine Chemistry;
Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; ACS
Books, American Chemical Society: Washington, DC,
1996.
3. (a) Fluorine-containing Amino Acids: Synthesis and Prop-
erties; Kukhar, V. P., Soloshonok, V. A., Eds.; John Wiley
´
´
& Sons: Chichester, 1995; (b) Begue, J. P.; Bonnet-Delpon,
D.; Crousse, B.; Legros, J. Chem. Soc. Rev. 2005, 34, 562–