(d, 2H, J = 14.1 Hz), 3.90 (d, 2H, J = 14.1 Hz), 7.16–7.30 (m,
12H), 7.66 (t, 1H, J = 7.7 Hz); 13C NMR (125 MHz, CD3OD) d
29.0, 37.6, 40.1, 54.2, 64.8, 122.8, 127.8, 129.6, 130.4, 139.1, 160.2,
176.0; ESI-MS m/z = 472.2 (M + H+), 494.2 (M + Na+); Anal.
Calcd. For C28H33N5O2 C, 71.3; H, 7.1; N, 14.9. Found C, 71.4; H,
7.2; N, 14.9.
Molecular modeling
For the molecular modeling studies, a PC version of Spartan Pro
program was used. To obtain the minima of energy, the conformer
distribution calculation option available in Spartan Pro was used.
With this option, an exhaustive Monte Carlo search without
constraints was performed for every structure. The torsion angles
were randomly varied and the obtained structures fully optimized
using the MMFF94 force field. Thus, 100 minima of energy within
an energy gap of 10 kcal mol−1 were generated. These structures
were analyzed and ordered considering the relative energy, being
the repeated geometries eliminated. For the Ag complex, the
geometry was fully optimized at the HF/3-21G* level of theory
implemented in Spartan Pro. Frequencies analysis showed that it
is a minimum of energy.
Synthesis of 8c. This compound was obtained as described
◦
above starting from 6c. Yield 65%; mp. 192–196 C; IR (KBr) m
3306, 3078, 2942, 1634, 1557 cm−1; 1H NMR (500 MHz, CD3OD)
d 1.42 (br, s 4H), 2.82 (m, 2H), 3.06 (m, 2H), 3.40 (m, 2H) 3.64
(d, 2H, J = 14.1 Hz), 3.88 (d, 2H, J = 14.1 Hz), 7.18 (d, 2H,
J = 7.7 Hz), 7.22–7.30 (m, 10H), 7.65 (t, 1H, J = 7.7 Hz); 13C
NMR (125 MHz, CD3OD) d 27.2, 39.2, 40.2, 54.3, 65.1, 122.0,
127.7, 129.4, 130.2, 138. 8, 139.0, 160.2, 175.9; ESI-MS m/z =
486.3 (M + H+), 508.2 (M + Na+); Anal. Calcd. For C28H33N5O2
C, 71.7; H, 7.3; N, 14.4. Found C, 71.8; H, 7.4; N, 14.4.
Acknowledgements
Financial support from the Spanish Ministerio de Ciencia y
Tecnolog´ıa (BQU2003-09215-C03-02) Bancaixa-UJI (P1B2004-
38) and Generalitat Valenciana (GRUPOS 04/031) is gratefully
acknowledged. P.S. thanks the University Jaume I for a postdoc-
toral fellowship. I. A. thanks MCYT for personal financial support
(Ramo´n y Cajal Program).
NMR Measurements
1
The H, and 13C spectra were recorded on Varian INOVA 500
1
spectrometer operating at 500 MHz for H and 125.75 MHz for
13C. The NMR experiments involving 15N were recorded on a
Varian INOVA 500 spectrometer equipped with a 5 mm tunable,
broadband, inverse-detection probe. The spectrometer operates
References
1
at 500 MHz for H, and 50.7 MHz for 15N. The spectra were
determined at 30 ◦C. Neat nitromethane was used as reference
(0 ppm) to calculate 15N chemical shifts. 1H–15N HMBC-type
correlation experiments were recorded using the gHMQC Varian
pulse sequence setting up the experiment for long-range couplings.
The studies were carried out in solutions containing 5–15 mg of
the ligands dissolved in 0.6 mL of the corresponding deuterated
solvent.
1 (a) J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
VCH, Weinheim, 1995; (b) see also the special issue on Molecular
Architectures Acc. Chem. Res., 2005, vol. 8, ((4)).
2 J. L. Atwood, J. E. Davies, D. D. McNicol, F. Vogtle and J.-M. Lehn,
(Eds.), Comprehensive Supramolecular Chemistry, vols.1–10, Elsevier,
Oxford, 1996.
3 (a) C. A. Hunter, Angew. Chem., Int. Ed., 2004, 43, 5310–5324; (b) M.
Munakata, L. P. Wu and G. L. Ning, Coord. Chem. Rev., 2000, 198,
171; (c) J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97, 1303;
(d) T. Kawase, H. R. Darabi and M. Oda;, Angew. Chem., Int. Ed. Engl.,
1996, 35, 2664; (e) D. A. Dougherty, Science, 1996, 271, 163.
4 (a) M. T. Albelda, J. C. Fr´ıas, E. Garc´ıa-Espan˜a and S. V. Luis, Org.
Biomol. Chem., 2004, 4, 816; (b) C. Bazzicalupi, A. Bencini, A. Bianchi,
M. Cecchi, B. Escuder, V. Fusi, E. Garc´ıa-Espan˜a, C. Giorgi, S. V. Luis,
G. Maccagni, V. Marcelino, P. Paoletti and B. Valtancoli, J. Am. Chem.
Soc., 1999, 121, 6807; (c) M. I. Burguete, E. Garc´ıa-Espan˜a, S. V. Luis,
J. F. Miravet, L. Paya, M. Querol and C. Soriano, Chem. Commun.,
1998, 1823; (d) M. I. Burguete, B. Escuder, J. C. Frias, E. Garc´ıa-
Espan˜a, S. V. Luis and J. F. Miravet, J. Org. Chem., 1998, 63, 1810;
(e) M. A. Bernardo, F. Pina, E. Garc´ıa-Espan˜a, J. Latorre, S. V. Luis,
J. M. Llinares, J. A. Ram´ırez and C. Soriano, Inorg. Chem., 1998, 37,
3935; (f) C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, C. Giorgi, P.
Paoletti and B. Valtancoli, J. Chem. Soc., Dalton Trans., 1997, 3535;
(g) B. Altava, M. I. Burguete, S. V. Luis, J. F. Miravet, E. Garc´ıa-
Espan˜a, V. Marcelino and C. Soriano, Tetrahedron, 1997, 53, 4751;
(h) J. A. Aguilar, E. Garc´ıa-Espan˜a, J. A. Guerrero, S. V. Luis, J. M.
Llinares, J. F. Miravet, J. A. Ram´ırez and C. Soriano, J. Chem. Soc.,
Chem. Commun., 1995, 2237.
5 (a) M. Cametti, M. Nissinen, A. D. Cort, L. Mandolini and K.
Rissanen, J. Am. Chem. Soc., 2005, 127, 3831; (b) G. W. Gokel, W. M.
Leevy and M. E. Weber, Chem. Rev., 2004, 104, 2723; (c) G. Gokel,
Chem. Commun., 2003, 2847; (d) G. W. Gokel, L. J. Barbour, R. Ferdani
and J. Hu, Acc. Chem. Res., 2002, 35, 878; (e) G. K. Fukin, S. V.
Linderman and J. K. Kochi, J. Am. Chem. Soc., 2002, 124, 8329;
(f) G. W. Gokel, L. J. Barbour, S. L. De Wall and E. S. Meadows,
Coord. Chem. Rev., 2001, 222, 127; (g) E. S. Meadows, S. L. De Wall,
L.J. Barbour and G. W. Gokel, J. Am. Chem. Soc., 2001, 123, 3092.
6 M. E. Weber, P. H. Schelesinger and G. W. Gokel, J. Am. Chem. Soc.,
2005, 127, 636–642 and references therein.
EMF measurements
The potentiometric titration were carried out at 298.1 0.1 K us-
ing 0.05 M (C2H5)4NClO4 in MeOH as the supporting electrolyte.
Before each measurement the Nernst’s equation was verified in
the following system:
Ag0|0.01 M AgNO3 (MeOH) + 0.04 M (C2H5)4NClO4 (MeOH)
ꢁ 0.05 M (C2H5)4NClO4 (MeOH) ꢁ cAg + (MeOH)
+ 0.05 M (C2H5)4NClO4 (MeOH) ꢁAg0
The specific measurements were performed in the system:
Ag0|0.01 M AgNO3 (MeOH) + 0.04 M (C2H5)4NClO4 (MeOH)
ꢁ 0.05 M (C2H5)4NClO4 (MeOH) ꢁ c0 (MeOH) + cAg
L
+ (MeOH) + 0.05 M (C2H5)4NClO4 (MeOH) |Ag0
where c0L is the concentration of the ligand at the beginning of the
titration, and cAg is the concentration of the standard solution of
silver ion.
Three series of the measurements were performed for three
different ligand concentrations c0 , which ranged from 5 × 10−4
L
to 5 × 10−3 M. The results reproducibility was 0.20 mV. The
values of formation constants were computed by means of the
MINIQUAD program,17 and the program based on the BEST
algorithm.18
7 (a) R. Rathore, V. J. Chebny and S. H. Abdelwahed, J. Am. Chem.
Soc., 2005, 127, 8012; (b) R.-H. Yang, W.-H. Chan, A. W. M. Lee,
P. F. Xia, H.-K. Zhang and K. Li, J. Am. Chem. Soc., 2003, 125, 2884;
858 | Org. Biomol. Chem., 2006, 4, 853–859
This journal is
The Royal Society of Chemistry 2006
©