P. Guga et al. / Tetrahedron 62 (2006) 2698–2704
2703
4.1.3. 50-O-DMT-N2-isobutyryl-deoxyguanosine 30-O-(2-
thio-‘spiro’-4,4-pentamethylene-1,3,2-oxathiaphospho-
Supplementary data
lane). The title compound was synthesized as described.8d
Supplementary data associated with this article can be
022. Text containing detailed description of molecular
modelingperformed;Scheme1S—mechanismofoxathiapho-
spholane ring-opening cyclization; Tables 1S, 2S—torsion
angles found for 28 lowest energy conformers of PV
intermediate 7c,d formed from 1c,d; Figures 1S, 2S—the
#4 and #5 conformations of PV-intermediates 7; Figures 3S,
4S—the energy profiles for intermediates formed from 1c,d
during cyclization 1/9/8/7; Tables 3S, 4S—energies
calculated for intermediates 8 and 9 leading to lowest
energy conformers of 7c,d derived from 1c,d; Tables 5S,
6S—energies and torsion angles found in conformational
search for ten lowest energy conformers of anionic form
of 1c,d.
4.1.4. SP-N4-benzoyl-deoxycytidine-30-O-(2-thio-1,3,2-
oxathiaphospholane)s (1a, BZCytBz, RZH). Into the
solution of fast-50-O-DMT-N4-benzoyl-deoxycytidine-30-
O-(2-thio-1,3,2-oxathiaphospholane) (110 mg, 0.14 mmol)
in methylene chloride (30 mL), p-toluenesulfonic acid
monohydrate (120 mg, 0.66 mmol) was added with stirring
at room temperature. The reaction progress was monitored
by TLC (silica gel, chloroform/methanol 9:1 v/v, Rf
substrate 0.78; Rf product 0.45). After 40 min, the reaction
mixture was concentrated and the oil residue was applied on
a silica gel column (20!100 mm, silica gel 60, 230–400
mesh, Merck). The column was eluted with a gradient
of chloroform/2-propanol 100:0/50:50. Appropriate frac-
tions were collected and evaporated to dryness to yield
1a (35 mg, 0.075 mmol, 53%). d 31P NMR 104.11 ppm
(CD3CN). Compounds 1b, 1c and 1d were obtained in
analogous way.
References and notes
1. Burgers, P. M. J.; Eckstein, F.; Hunneman, D. H.; Baraniak, J.;
Kinas, R. W.; Lesiak, K.; Stec, W. J. J. Biol. Chem. 1979, 254,
9959.
4.1.5. The intramolecular cyclization reaction of 1a. Into
the solution of fast-N4-benzoyl-deoxycytidine-30-O-(2-thio-
1,3,2-oxathiaphospholane) (31 mg, 0.066 mmol) in anhy-
drous acetonitrile (0.3 mL) equimolar amount of DBU
(10 mL) was added. After 5 min at room temperature the
2. (a) O’Brian, C. A.;Roczniak, S. A.;Bramson, H. N.;Baraniak, J.;
Stec, W. J.; Kaiser, E. T. Biochemistry 1982, 21, 4371. (b)
Jarvest, R. L.; Lowe, G.; Baraniak, J.; Stec, W. J. Biochem. J.
1982, 203, 461. (c) Rothermel, J. D.; Stec, W. J.; Baraniak, J.;
Jastorff, B.; Botelho, L. H. P. J. Biol. Chem. 1983, 258, 12125. (d)
Van Haastert, P. J. M.; Van Driel, R.; Jastorff, B.; Baraniak, J.;
Stec, W. J.; de Wit, R. J. W. J. Biol. Chem. 1984, 259, 10020. (e)
Zimmerman, A. L.; Yamanaka, G.; Eckstein, F.; Baylor, D. A.;
Stryer, L. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 8813. (f)
Schwede, F.; Maronde, E.; Genieser, H.; Jastorff, B. Pharmacol.
Ther. 2000, 87, 199.
reaction mixture was diluted with CD3CN (0.3 mL) and 31
P
NMR spectra showed quantitative formation of single
product resonating at d 51.5 ppm (CD3CN). After removal
of the benzoyl protecting groups (treatment with 30%
aqueous ammonia at 55 8C for 16 h) the product was
identified by 31P NMR and HPLC comparison with genuine
sample,4d as SP-deoxycytidine cyclic 30,50-O,O-phos-
phorothioate (3A). Its structure was also confirmed by
FAB MS (m/z 304.1 (negative ions); calculated MW 305.25
(free acid)). The cyclization of 1b, 1c and 1d was performed
in analogous way. For 1b and 1c single products were
observed, while for 1d several resonances were found
within a range 55–57 ppm.
3. (a) Eckstein, F. Annu. Rev. Biochem. 1985, 54, 367. (b)
Eckstein, F.; Kutzke, U. Tetrahedron Lett. 1986, 27, 1657.
4. (a) Baraniak, J.; Kinas, R. W.; Lesiak, K.; Stec, W. J. J. Chem.
Soc., Chem. Commun. 1979, 940–941. (b) Stec, W. J. Acc.
´
Chem. Res. 1983, 16, 411. (c) Lesnikowski, Z. J.;
´
Niewiarowski, W.; Zielinski, W. S.; Stec, W. J. Tetrahedron
1984, 40, 15. (d) Baraniak, J.; Stec, W. J. J. Chem. Soc., Perkin
Trans. 1 1987, 1645. (e) Wozniak, L. A.; Okruszek, A. Chem.
Soc. Rev. 2003, 32, 158.
4.1.6. The condensation reaction of 1d in the presence of
30-O-acetylthymidine. A solution of 1d (70 mg, 130 mmol)
and 30-O-acetylthymidine (6 mg, 21 mmol) in anhydrous
acetonitrile (0.4 mL) was treated, with stirring at room
temperature, with DBU (22 mL, 145 mmol). After 7 min the
5. De Napoli, L.; Galeone, A.; Mayol, L.; Messere, A.;
Montesarchio, D.; Piccialli, G. Bioorg. Med. Chem. Lett.
1995, 3, 1325. Smietana, M.; Kool, E. T. Angew. Chem.,
Int. Ed. 2002, 41, 3704. Kool, E. T. Acc. Chem. Res. 1998,
31, 502.
reaction mixture was diluted with CD3CN (0.3 mL) and 31
P
NMR showed several peaks within 56–58 ppm range.
The deprotected products (treatment with 30% aqueous
ammonia at 55 8C for 16 h) were isolated by preparative RP
HPLC (PTH C18, 5 m, 2.1!220 mm column (Brownlee)
with a linear gradient of acetonitrile in 0.1 M TEAB:
0–60 min—0.47%/min; flow 0.3 mL/min (UV detection at
255 nm)), quantified by UV absorption at 260 nm and
identified by MALDI-TOF MS.
6. Riss, P.; Mayer, R.; Weinhouse, H.; Amikam, D.; Huggirat, Y.;
Benziman, M.; de Vrom, E.; Fidder, A.; de Paus, E.; Sliedgret,
L. A. J. M.; van der Marel, G. A.; van Boom, J. H. J. Biol. Chem.
1990, 265, 18933–18943.
7. Battistini, C.; Fustinoni, S.; Brasca, M. G.; Borghi, D.
Tetrahedron 1993, 49, 1115.
´
8. (a) Stec, W. J.; Grajkowski, A.; Koziołkiewicz, M.; Uznanski,
B. Nucleic Acids Res. 1991, 19, 5883–5888. (b) Stec, W. J.;
´
Grajkowski, A.; Karwowski, B.; Kobylanska, A.;
Acknowledgements
Koziołkiewicz, M.; Misiura, K.; Okruszek, A.; Wilk, A.;
Guga, P.; Boczkowska, M. J. Am. Chem. Soc. 1995, 117,
12019. (c) Stec, W. J.; Karwowski, B.; Boczkowska, M.;
Guga, P.; Koziołkiewicz, M.; Sochacki, M.; Wieczorek, M. W.;
Błaszczyk, J. J. Am. Chem. Soc. 1998, 120, 7156. (d) Guga, P.;
Studies described in this report were financially assisted by
the State Committee for Scientific Research (MNiI, grant 3
T09A 059 28 to W.J.S.).