J.D.Rainier et al.
To conclude, this manuscript has described our total syn-
thesis of the marine ladder toxin gambierol.This work has
described a new subunit coupling strategy to polycyclic
ethers.Critical to the success was the use of a titanium eth-
ylidene in an olefin metathesis, carbonyl–olefination cycliza-
tion reaction.Current investigations include the exploration
of the biological properties of synthetic gambierol and ana-
logues as well as the application of this coupling strategy to
other marine polycyclic ethers.
Acknowledgements
We are grateful to the National Institutes of Health, General Medical
Sciences (GM56677) for support of this work.We would like to thank
Dr.Charles Mayne for help with NMR experiments and Dr.Elliot M.
Rachlin for help in obtaining mass spectra.
Scheme 7.a) TPAP, NMO (93%); b) imidazole, CH 2Cl2, 408C (100%,
b/a 4:1); c) CSA, MeOH (90%); d) Zn(OTf)2, EtSH (86%); e) Ph3SnH,
AIBN (97%).
[1] a) M.Satake, M.Murata, T.Yasumoto, J. Am. Chem. Soc. 1993, 115,
361; b) A.Morohashi, M.Satake, T.Yasumoto,
1998, 39, 97.
Tetrahedron Lett.
[2] a) H.Fuwa, N.Kainuma, K.Tachibana, M.Sasaki,
J. Am. Chem.
sponding diiodoalkene using a modified Corey–Fuchs addi-
tion reaction (Scheme 8).[28] Stereoselective reduction using
Zn(Cu) couple,[29] global deprotection using SiF4,[30] and
Stille coupling of the resulting triol with dienyl stannane
53[27] provided (À)-gambierol.The spectroscopic and physi-
cal data for synthetic gambierol was identical to that report-
ed previously.Impressive in this work is that only 12 post-
coupling transformations were required to complete the syn-
thesis from A–C and F–H subunits 23 and 31, respectively.
Overall, our synthesis involved 44 steps (longest linear se-
quence from d-glucal, 69 total steps) and resulted in a 1.5%
overall yield of gambierol.[31] Using the chemistry described
we were able to generate 7.5 mg of gambierol that we are
currently using in ion channel binding studies.
Soc. 2002, 124, 14983; b) I.Kadota, H.Takamura, K.Sata, A.Ohno,
K.Matsuda, M.Satake, Y.Yamamoto, J. Am. Chem. Soc. 2003, 125,
11893.
[3] In Yasumotoꢀs original isolation, 1100 L of fermentation broth re-
sulted in 1.2 mg of gambierol.
[4] Some SAR work has already been carried out, see a) E.Ito, Suzuki-
F.Toyota, K.Tashimori, H.Fuwa, K.Tachibana, M.Sataki, M.
Sasaki, Toxicon 2003, 42, 733; b) H.Fuwa, K.Kainuma, K.Tachiba-
na, C.Tsukano, M.Satake, M.Sasaki, Chem. Eur. J. 2004, 10, 4894;
c) H.Fuwa, H.Kainuma, M.Satake, M.Sasaki,
Bioorg. Med. Chem.
Lett. 2003, 13, 2519.
[5] a) O.Fujimura, GC. .Fu, RH. .Grubbs,
4029; b) J.S. Clark, J.G. Kettle,
J. Org. Chem. 1994, 59,
Tetrahedron Lett. 1997, 38, 123;
c) M.H.D.Postema, J. Org. Chem. 1999, 64, 1770; d) J.S.Clark, O.
Hamelin, Angew. Chem. 2000, 112, 380; Angew. Chem. Int. Ed.
2000, 39, 372; e) A.K. Chatterjee, J.P. Morgan, M. Scholl, R.H.
Grubbs, J. Am. Chem. Soc. 2000, 122, 3783; f) J.D. Rainier, J.M.
Cox, S.P.Allwein, Tetrahedron Lett. 2001, 42, 179.
[6] a) K.C. Nicolaou, C.V.C. Prasad, C-.K. Hwang, M.E. Duggan,
C.A. Veale, J. Am. Chem. Soc. 1989, 111, 5321; b) K.C. Nicolaou,
C.K.Hwang, D.A.Nugiel, J. Am. Chem. Soc. 1989, 111, 4136.
[7] U.Majumder, J.M.Cox, H.W.B.Johnson, J.D.Rainier,
Chem. Eur.
J. 2006, 12, 1736.
[8] For other examples of this reduction see: a) J.M.Cox, J.D.Rainier,
Org. Lett. 2001, 3, 2919; b) U. Majumder, J.M. Cox, J.D. Rainier,
Org. Lett. 2003, 5, 913; c) K.Fujiwara, D.Awakura, M.Tsunashima,
A.Nakamura, T.Honma, A.Murai,
d) ref.[7].
J. Org. Chem. 1999, 64, 2616;
[9] K.Tsushima, K.Araki, A.Murai, Chem. Lett. 1989, 1313.
[10] K.C.Nicolaou, K.R.Reddy, G.Skokotas, F.Sato, X-.Y.Xiao, C-.K.
Hwang, J. Am. Chem. Soc. 1993, 115, 3558.
[11] For an example of the successful use of BiBr3, Et3SiH, see P.A.
Evans, J.Cui, S.J.Gharpure, R.J.Hinkle,
J. Am. Chem. Soc. 2003,
125, 11456.
[12] For an example of the successful use of Et3SiH, TMSOTf see K.
Suzuki, T.Nakata, Org. Lett. 2002, 4, 3943.
[13] See Supporting Information for the generation of 15.
[14] We were also unsuccessful in our attempts to convert hydroxy
ketone 15 directly into the octacycle using BiBr3, Et3SiH or
TMSOTf, Et3SiH.
Scheme 8.a) TPAP, NMO (100%); b) CHI 3, KOtBu, PPh3 (94%); c) Zn/
Cu couple; d) SiF4 (95%); e) [Pd2(dba)3], P(furyl)3, CuI, DMSO, 53
(85%).
[15] Generated in an analogous fashion to 23, see Supporting Informa-
tion.
[16] I.Shiina, M.Kubota, R.Ibuka, J. Org. Chem. 2004, 69, 1822.
1752
ꢁ 2006 Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim
Chem. Eur. J. 2006, 12, 1747 – 1753