Angewandte
Chemie
binding event[10]—inhibition of hydrogen bonding of the
macrocycle at the succinamide unit through the conforma-
tional change induced by metal chelation at the BPA site—
that leads to translocation of the macrocycle to the inherently
weaker hydrogen-bonding succinic amide ester site, which lies
1.5 nm away. Similarly large movements in rotaxanes have
been used to bring about changes in conductivity,[4d,11] circular
dichroism,[12] fluorescence,[13] porosity,[14] and surface
energy,[15] and to carry out mechanical work,[15,16] largely as
a result of chemical (redox, acid-base, and photochemical)
reactions on the covalent structure of the rotaxane. An
allosteric shuttling mechanism offers the possibility of using
metal-binding events as the energy source or operating
stimulus for functional synthetic molecular machines.
Inorg. Chem. 2005, 44, 4796 – 4805; f) D. S. Marlin, D. Gonzµlez
Cabrera, D. A. Leigh, A. M. Z. Slawin, Angew. Chem. 2006, 118,
83 – 89; Angew. Chem. Int. Ed. 2006, 45, 77 – 83.
[6] F. G. Gatti, D. A. Leigh, S. A. Nepogodiev, A. M. Z. Slawin, S. J.
Teat, J. K. Y. Wong, J. Am. Chem. Soc. 2001, 123, 5983 – 5989.
[7] There was no indication of reaction by color change, mass
spectrometry, or thin-layer chromatography.
[8] Crystals of 1CuCl2 and 2(CuCl2)2 of suitable quality for X-ray
diffraction studies were obtained by carefully layering a solution
of the appropriate complexin N,N-dimethylformamide (DMF)
with CH3CN (approximately 1:10 v/v). Single crystals of 3, 4, 5,
and 5CuCl2 were grown from slow evaporation of saturated
solutions in CH3CN, CHCl3, CH2Cl2, and CH2Cl2/DMF (5:1 v/v),
respectively. Data for 1CuCl2, 2(CuCl2)2, 3, 4, and 5CuCl2 were
collected on a Bruker SMART CCD diffractometer, whereas
data for 5 were collected on a Rigaku Saturn (MM007 high flux
RA/MoKa radiation, confocal optic). Data were collected at
150 K for 1CuCl2, 2(CuCl2)2, and and 4, at 125 K for 3 and
5CuCl2, and at 93 K for 5. All data collections employed narrow
frames (0.3–1.08) to obtain at least a full hemisphere of data.
Intensities were corrected for Lorentz polarization and absorp-
tion effects (multiple equivalent reflections). Structures were
solved by direct methods, non-hydrogen atoms were refined
anisotropically with CH protons being refined in riding geo-
metries (SHELXTL) against F2. In most cases, amide protons
were refined isotropically subject to a distant constraint. Data
for 1CuCl2·3.75DMF: C73.75H83.75N12.25O9.25Cl2Cu, Mr = 1424.22,
crystal size 2.07 0.37 0.35 mm3, monoclinic, P21/c, a =
Received: July 26, 2005
Revised: October 1, 2005
Published online: January 30, 2006
Keywords: allosterism · hydrogen bonds · molecular devices ·
.
rotaxanes · transition metals
[1] For recent reviews on allostery in biological systems, see: a) J.-P.
Changeux, S. J. Edelstein, Neuron 1998, 21, 959 – 980; b) R. R.
Breaker, Nature 2004, 432, 838 – 845; c) J.-P. Changeux, S. J.
Edelstein, Science 2005, 308, 1424 – 1428.
15.5009(8), b = 43.623(2), c = 23.9057(11) , Z = 8, 1calcd
=
1.231 MgmÀ3 m = 0.415 mmÀ1
;
,
92715 reflections collected,
27020 unique (Rint = 0.0521) giving R = 0.0702 for 18444
[2] a) A. Mattevi, M. Rizzi, M. Bolognesi, Curr. Opin. Struct. Biol.
1996, 6, 762 – 769; b) J. Goldberg, A. C. Nairn, J. Kuriyan, Cell
1996, 84, 875 – 887; c) B. Kobe, B. E. Kemp, Nature 1999, 402,
373 – 376; d) G. Licini, P. Scrimin, Angew. Chem. 2003, 115,
4720 – 4723; Angew. Chem. Int. Ed. 2003, 42, 4572 – 4575;
e) W. A. Lim, Curr. Opin. Struct. Biol. 2002, 12, 61 – 68; f) J. A.
Hardy, J. A. Wells, Curr. Opin. Struct. Biol. 2004, 14, 706 – 715.
[3] For reviews on synthetic allosteric receptor systems, see: a) T.
Nabeshima, Coord. Chem. Rev. 1996, 151 – 169; b) S. Shinkai, M.
Ikeda, A. Sugasaki, M. Takeuchi, Acc. Chem. Res. 2001, 34, 494 –
503; c) M. Takeuchi, M. Ikeda, A. Sugasaki, S. Shinkai, Acc.
Chem. Res. 2001, 34, 865 – 873; d) L. Kovbasyuk, R. Krämer,
Chem. Rev. 2004, 104, 3161 – 3187; e) S. Shinkai, M. Takeuchi,
Bull. Chem. Soc. Jpn. 2005, 78, 40 – 51.
observed data [Fo > 4s(Fo)], S = 0.994 for 1481 parameters;
À3
residual electron density extremes were 0.549 and À0.566 e
.
Data for 2(CuCl2)2: C70H78Cl4Cu2N14O8, Mr = 1512.34, crystal
size 0.19 0.18 0.08 mm3, monoclinic, P21/c, a = 12.7343(5),
b = 19.0061(8), c = 15.7470(7) , Z = 2, 1calcd = 1.438 MgmÀ3
;
m = 0.828 mmÀ1
, 20841 reflections collected, 7515 unique
(Rint = 0.0450) giving R = 0.0791 for 5367 observed data [Fo >
4s(Fo)], S = 1.112 for 444 parameters; residual electron density
extremes were 0.663 and À0.851 eÀ3. Data for 3: C62H56N8O6,
Mr = 1009.15, crystal size 0.21 0.1 0.1 mm3, monoclinic, C2/c,
a = 31.107(10), b = 18.677(6), c = 21.001(7) , Z = 8, 1calcd
=
1.318 MgmÀ3 m = 0.086 mmÀ1
;
,
31645 reflections collected,
9198 unique (Rint = 0.5301) giving R = 0.1611 for 2791 observed
data [Fo > 4s(Fo)], S = 0.994 for 707 parameters; residual
electron density extremes were 0.383 and À0.380 eÀ3. Data
[4] a) Molecular Catenanes, Rotaxanes, and Knots:
A Journey
Through the World of Molecular Topology (Eds.: J.-P. Sauvage,
C. Dietrich-Buchecker), Wiley-VCH, Weinheim, 1999; b) V.
Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem.
2000, 112, 3484 – 3530; Angew. Chem. Int. Ed. 2000, 39, 3348 –
3391; c) V. Balzani, M. Venturi, A. Credi, Molecular Devices and
Machines—A Journey into the Nanoworld, Wiley-VCH, Wein-
heim, 2003; d) A. H. Flood, R. J. A. Ramirez, W.-Q. Deng, R. P.
Muller, W. A. Goddard, J. F. Stoddart, Aust. J. Chem. 2004, 57,
301 – 322; e) “Synthetic Molecular Machines”: E. R. Kay, D. A.
Leigh in Functional Artificial Receptors (Eds.: T. Schrader, A. D.
Hamilton), Wiley-VCH, Weinheim, 2005, pp. 333 – 406.
for 4·(CHCl3)3: C64H58Cl12N10O6, Mr = 1488.66, crystal size 0.59
3
¯
0.46 0.41 mm , triclinic, P1, a = 11.8069(7), b = 12.2006(7) ,
Z = 4, 1calcd = 1.485 MgmÀ3; m = 0.559 mmÀ1, 16004 reflections
collected, 7684 unique (Rint = 0.04) giving R = 0.0526 for 6362
observed data [Fo > 4s(Fo)], S = 0.9917 for 415 parameters;
À3
residual electron density extremes were 0.44 and À0.36 e
.
Data for 5: C62H59N9O8, Mr = 1058.18, crystal size 0.1 0.03
0.03 mm3, triclinic, P1, a = 10.9491(5), b = 14.8382(2), c =
¯
18.5719(8) , Z = 2, 1calcd = 1.311 MgmÀ3
;
m = 0.716 mmÀ1
,
32650 reflections collected, 7414 unique (Rint = 0.0782) giving
R = 0.0806 for 5270 observed data [Fo > 4s(Fo)], S = 1.051 for
[5] For examples of CuII and CdII bound to BPA tertiary amide
ligands, including several with a central carboxamide nitrogen
and discussions of the thermodynamics and kinetics of these
coordination modes, see: a) C. Cox, D. Ferraris, N. N. Murthy, T.
Lectka, J. Am. Chem. Soc. 1996, 118, 5332 – 5333; b) N. Niklas, F.
Hampel, G. Liehr, A. Zahl, R. Alsfasser, Chem. Eur. J. 2001, 7,
5135 – 5142; c) N. Niklas, F. W. Heinemann, F. Hampel, R.
Alsfasser, Angew. Chem. 2002, 114, 3535 – 3537; Angew. Chem.
Int. Ed. 2002, 41, 3386 – 3388; d) N. Niklas, F. W. Heinemann, F.
Hampel, T. Clark, R. Alsfasser, Inorg. Chem. 2004, 43, 4663 –
4673; e) S. Novokmet, F. W. Heinemann, A. Zahl, R. Alsfasser,
746 parameters; residual electron density extremes were 0.288
À3
and
C
À0.313 e
.
Data
for
5CuCl2·3DMF·2H2O:
68.75H75.75Cl2CuN11.25O10.75, Mr = 1366.1, crystal size 0.16 0.1
0.1 mm3, monoclinic, P2(1)/n, a = 25.279(6), b = 10.970(3), c =
25.649(6) , Z = 4, 1calcd = 1.288 MgmÀ3; m = 0.451 mmÀ1, 44451
reflections collected, 12876 unique (Rint = 0.4536) giving R =
0.1614 for 4795 observed data [Fo > 4s(Fo)], S = 1.038 for 856
parameters; residual electron density extremes were 1.180 and
À0.718 eÀ3. The protons on solvate molecules were not allowed
for in the refinement. CCDC 281563–281568 (1CuCl2, 2(CuCl2)2,
Angew. Chem. Int. Ed. 2006, 45, 1385 –1390
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1389