M. Domostoj et al. / Tetrahedron Letters 47 (2006) 2205–2208
2207
Ph
N
Ph
9. Rutjes, F. J. T.; Tjen, K. C. M.; Wolf, L. B.; Karstens, W.
F. J.; Schoemaker, H. E.; Hiemstra, H. Org. Lett. 1999, 1,
717–720.
10. Alcaide, B.; Almendros, P.; Aragoncillo, C.; Salgado, N.
R. J. Org. Chem. 1999, 64, 9596–9604.
11. Couty, F.; Durrat, F.; Prim, D. Tetrahedron Lett. 2003,
44, 5209–5212.
12. For recent review on aziridines see: Hu, X. E. Tetrahedron
2004, 60, 2701–2748.
13. For a recent review on azetidines see: Couty, F.; Evano,
G.; Prim, D. Mini-Rev. Org. Chem. 2004, 1, 133–148.
14. Ungureanu, I.; Klotz, P.; Mann, A. Angew. Chem., Int.
Ed. 2000, 39, 4615–4616.
ii, iii
CO Me
2
CO Me
N
2
68%
SO Ar
2
SO Ar
i
2
18a
16a (exo)
35%
30%
15a-a'
Ph
Ph
N
ii, iii
i
CO Me
2
57%
N
CO Me
2
SO Ar
2
SO Ar
2
17a (endo)
19a
R
Ph
CO H
2
CO H
2
15. Ungureanu, I.; Klotz, P.; Schoenfelder, A.; Mann, A.
Chem. Commun. 2001, 958–959.
16. Prasad, B. A. B.; Pandey, G.; Singh, V. K. Tetrahedron
Lett. 2004, 45, 1137–1141.
CO H
2
N
CO H
2
N
H
H
Homo-kainoids
Phenyl-kainic acid
17. Prasad, B. A. B.; Bisal, A.; Singh, V. K. Org. Lett. 2004, 6,
4829–4831.
18. Yadav, V. K.; Siramurthy, V. J. Am. Chem. Soc. 2005,
127, 16366–16367.
Scheme 3. Reagents and conditions: (i) Pd(OAc)2, O2, DMSO, 40 °C,
4 h, separation via chromatography; (ii) RuCl3, NaIO4; (iii) CH2N2 in
Et2O.
19. Begley, M.; Combie, L.; Haigh, D.; Jones, R.; Osborne, S.;
Webster, R. J. Chem. Soc., Perkin Trans. 1 1993, 2027–
2046.
20. In our hands azetidine 1a did not react with allylmagne-
sium bromide, no reaction was observed.
21. The allylsilanes have been prepared following reported
procedures. Compound 5: D’Aniello, F.; Falorni, M.;
Mann, A.; Taddei, M. Tetrahedron: Asymmetry 1996, 7,
1217–1226; Compound 11: Nasiak, L. D.; Post, H. W. J.
Org. Chem. 1959, 24, 489–492; Compound 12: Fleming, I.;
Paterson, I. Synthesis 1979, 446–448; Compounds 14 and
16: Ashe, A. J. Am. Chem. Soc. 1973, 95, 818–821.
22. Schneider, M. R.; Klotz, P.; Ungureanu, I.; Mann, A.;
Wermuth, C. G. Tetrahedron Lett. 1999, 40, 3873–
3876.
23. For the importance of kainoids see: Monaghan, D. T.;
Bridges, R. J.; Cotman, C. W. Ann. Dev. Pharmacol.
Toxicol. 1989, 29, 365–402.
24. For a review on kainoids see: Parsons, A. F. Terahedron
1996, 52, 4149–4174.
25. For a review on excitatory amino acids see: Braeuner-
Osborne, H.; Egebjerg, J.; Nielsen, E. O.; Madsen, U.;
Kroggsgaard-Larsen, P. J. Med. Chem. 2000, 43, 2609–
2645.
26. Larock, R. C.; Hightower, T. R.; Hasvold, L.; Peterson,
K. P. J. Org. Chem. 1996, 61, 3584–3585.
phenyl-homo-kainic acid. Using the hydroamination
reaction assisted by Pd(II),26 the mixture of diastereo-
mers (15a–a0) was converted into bicyclic adducts 16a
and 17a, which could be separated by column chroma-
tography and identified by extensive NMR (COSY
and NOESY experiments) to be, respectively, the exo
(16a) and endo (17a) adducts with a cis ring junction.
Finally, a single crystal X-ray analysis of 17a confirmed
our NMR analysis.27 Then each diastereomer could be
transformed into the fully protected phenyl-homokai-
noids 18a–19a in a two step sequence: Sharpless oxida-
tion and diazomethane esterification, awaiting final
deprotection.28,29
In conclusion in this work on N-activated azetidines, we
have demonstrated that the regioselective ring opening
with allysilanes is realized at the benzylic carbon under
smooth reaction conditions in a good yielding sequence.
Our work is probably giving a new vitality to the azeti-
dine chemistry, indeed some of the described adducts
have a real chemical potential. We are currently using
the above methodology towards the synthesis of biolo-
gical active compounds.
27. The X-ray structure and coordinates for compound 17a
have been deposited at the Cambridge Crystallographic
Database under the following code CCDC 290233.
28. Typical experimental conditions for the preparation of 4a. A
mixture of azetidine 1a (100 mg, 0.35 mmol) and trimeth-
ylallylsilane 2 (85 ll, 0.53 mmol, 1 equiv) in CH2Cl2 (5 ml)
is cooled at ꢀ78 °C and a solution of BF3ÆEt2O (100 ll,
0.8 mmol, 2.3 equiv) in CH2Cl2 (1 ml) is added dropwise.
After 1 h, H2O (2 ml) was added and the mixture was left
overnight at room temperature. More water was added
and the organic layer was separated, washed with brine,
dried with Na2SO4 and concentrated in vacuo. The residue
was purified by column chromatography on silica gel
eluting with heptane/Et2O 8:2 to yield 4a (70%).
29. Selected physical data: Compound 4a mp 76–78 °C; IR
(KBr) m (cmꢀ1) 3270, 3090, 1320, 1170; 1H NMR
(300 MHz, CDCl3, 25 °C) d 7.68 (d, J 8.5 Hz, 2H) 7.38–
7.12 (m, 5H), 7.11–7.02 (m, 2H), 5.68–5.52 (m, 1H), 4.95
(d, J 6 Hz, 1H), 4.73 (br s, 1H), 2.74–2.85 (m, 2H), 4.86–
4.83 (m, 1H), 2.62–2.58 (m, 1H), 2.42 (s, 3H), 2.29 (dt, J
7.0 and 1.5 Hz, 2H), 1.97–1.60 (m, 2H); 13C NMR (75 Hz,
CDCl3, 25 °C) d 143.7, 143.4, 137.1, 136.4, 129.8, 128.7,
References and notes
1. Gensler, W. J.; Koehler, R. W. J. Org. Chem. 1962, 27,
2754–2762.
2. Testa, E.; Fontanella, L.; Aresi, V. Liebigs Ann. Chem.
1964, 676, 160–167.
3. Hassner, A.; Wiegand, N. J. Org. Chem. 1986, 51, 3652–
3656.
4. Roberto, D.; Alper, H. J. Am. Chem. Soc. 1989, 111,
7539–7543.
5. Ojima, I.; Zhao, M.; Yamato, T.; Nakahashi, K.;
Yamashita, M.; Abe, R. J. Org. Chem. 1991, 56, 5263–
5277.
6. Satake, A.; Ishii, H.; Shimizu, I.; Inoue, Y.; Hasegawa, H.;
Yamamoto, A. Tetrahedron 1995, 51, 5331–5340.
7. Schneider, M. R.; Mann, A.; Taddei, M. Tetrahedron Lett.
1996, 37, 8493–8496.
8. O’Neil, I. A.; Potter, A. J. Chem. Commun. 1998, 1487–
1488.