G. Pandey, S. B. Raikar / Tetrahedron Letters 47 (2006) 2029–2032
2031
O
O
O
S
S
H
O
O
H
COOMe
COOEt
11
d
c
a
COOMe
COOEt
b
COOMe
COOMe
2
H
H
15
10
14
a, b
c
O
O
O
O
COOMe
d
e
f
11
OH
16
O
COOMe
H
17
13
H
H
H
12
Scheme 4. Synthesis of 13, 15, and 17. Reagents and conditions: (a) (i) 10% HCl, THF, rt, 93%; (ii) ethanedithiol, BF3ÆOEt2, DCM, 0 °C to rt, 97%;
(b) nBu3SnH, AIBN, 130 °C, 96%; (c) (i) 1 equiv NaOH, MeOH, reflux, 87%; (ii) SOCl2, pyridine, PhH, rt; (iii) CH2N2, Et2O, 0 °C to rt; (iv) Ag2O,
MeOH, reflux, 78%; (d) (i) NaHMDS, THF, 0 °C to rt, 94%; (ii) DABCO, o-xylene, 150 °C, 82%; (e) Na, liq. NH3, ꢁ78 °C, 63%; (f) (CH2OH)2,
p-TsOH, toluene, 90 °C, 94%.
obtained selectively by reverse addition of a slurry of LAH
in THF to a stirred solution of 5 at low temperature
treatment with sodium in liquid ammonia at ꢁ78 °C,
compound 16 was obtained as the major product and
(ꢁ20 °C).
the expected a-hydroxy ketone was not produced in iso-
25
6. Compound 6: ½aꢀD ꢁ30.42 (c 0.76, CHCl3); IR (film) mmax
lable amounts.16 Therefore, compound 16 was subjected
2957, 1724, 1454, 1361, 1245, 1099, 1026, 756 cmꢁ1
;
1H
to dioxolane protection under controlled conditions
NMR (CDCl3, 200 MHz) 1.16 (s, 3H), 1.79 (t,
d
(ethylene glycol, p-TsOH, toluene, 90 °C, 6 h) to afford
J = 6.3 Hz, 2H), 2.14–2.33 (m, 2H), 3.84–4.12 (m, 4H),
5.33 (dt, J = 10.1, 2.0 Hz, 1H), 5.88 (dt, J = 10.2, 3.5 Hz,
1H), 9.68 (s, 1H); 13C NMR (CDCl3, 50 MHz) d 16.4,
24.3, 28.4, 55.5, 64.7, 64.9, 109.4, 127.3, 128.9, 201.3; Anal.
Calcd for C10H14O3 (182.22): C, 65.91; H, 7.71. Found: C,
65.83; H, 8.00.
25
17 (½aꢀD +6.27 (c 0.35, CH2Cl2)) as the sole product
(Scheme 4).17
In summary, we have successfully developed a new
approach for the stereoselective construction of trans-
hydrindane systems, present in a large number of bio-
active natural products and analogues starting from the
readily accessible ketone 4. The functionalities present
at suitable positions provide the means for their conver-
sion into more complex molecular entities. Further stud-
ies are in progress to utilize this strategy in the synthesis
of some biomedically important compounds possessing
vicinal quaternary and tertiary stereocenters in trans-
fashion in cyclohexane ring systems.
7. Chidambaram, N.; Chandrasekaran, S. J. Org. Chem.
1987, 52, 5048–5051.
8. Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226–2227.
9. Stork, G.; Franklin, P. J. Aust. J. Chem. 1992, 45, 275–
284.
25
10. Compound 3: ½aꢀD ꢁ42.73 (c 0.68, CH2Cl2); IR (film) mmax
1
3447, 2985, 1733, 1438, 1255, 1117, 1038 cmꢁ1; H NMR
(CDCl3, 200 MHz) d 1.33 (s, 3H), 1.91 (dd, J = 13.7,
4.0 Hz, 1H), 2.46 (dd, J = 13.7, 5.2 Hz, 1H), 3.70 (s, 3H),
3.98–4.07 (m, 4H), 4.29–4.36 (m, 1H), 5.61 (dd, J = 10.0,
0.9 Hz, 1H), 5.90 (dd, J = 9.8, 3.1 Hz, 1H); 13C NMR
(CDCl3, 50 MHz) d 17.9, 38.6, 52.0, 55.7, 63.7 (2C), 68.9,
111.7, 131.5, 133.4, 165.8; GC–MS (m/z) 228 (M+), 180,
166, 152, 137, 112, 107, 93, 74 (100), 60, 41; Anal. Calcd
for C11H16O5 (228.25): C, 57.88; H, 7.07. Found: C, 57.72;
H, 6.95.
Acknowledgements
S.B.R. thanks CSIR, New Delhi, for the award of
Research Fellowship. We sincerely thank Dr. H. R.
Sonawane for fruitful discussions.
25
11. Compound 2: ½aꢀD +21.70 (c 0.84, CH2Cl2); IR (film) mmax
2996, 1736, 1730, 1633, 1440, 1371, 1250, 1053, 712 cmꢁ1
;
1H NMR (CDCl3, 200 MHz) d 1.15 (t, J = 7.1 Hz, 3H),
1.54 (s, 3H), 2.12–2.56 (m, 5H), 3.72 (s, 3H), 3.89–4.08 (m,
4H), 4.22 (q, J = 7.0 Hz, 2H), 5.43–5.98 (m, 2H); 13C
NMR (CDCl3, 50 MHz) d 9.1, 22.0, 28.2, 34.4, 36.5, 52.3,
53.0, 63.7, 65.1, 65.4, 112.0, 121.4, 125.6, 173.9 (2C); GC–
MS (m/z) 253 (M+ꢁOEt), 237, 227, 210, 195, 181, 169,
152, 151, 125, 107, 86, 79, 57 (100), 43; Anal. Calcd for
C15H22O6 (298.34): C, 60.39; H, 7.43. Found: C, 60.31; H,
7.23.
References and notes
1. (a) Zeelen, F. J. Nat. Prod. Rep. 1994, 11, 607–612; (b)
Zhu, G.-D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877–
1952; (c) Corey, E. J.; Cheng, X.-M. The Logic of
Chemical Synthesis; John Wiley and Sons: New York,
1989; (d) Nicolaou, K. C.; Sorensen, E. J. Classics in Total
Synthesis; VCH: Weinheim, 1996.
12. Huang, B.-S.; Parish, E. J.; Miles, D. H. J. Org. Chem.
1974, 39, 2647–2648.
´
´
2. (a) Gonzalez-Avion, X. C.; Mourino, A. Org. Lett. 2003,
˜
25
13. Compound 15: ½aꢀD +7.38 (c 0.8, CH2Cl2); IR (film) mmax
5, 2291–2293; (b) Posner, G. H.; Kahraman, M. Eur. J.
Org. Chem. 2003, 3889–3895.
3. Jankowski, P.; Marczak, S.; Wicha, J. Tetrahedron 1998,
54, 12071–12150.
4. Schultz, A. G.; Macielag, M.; Sundararaman, P.; Taveras,
A. G.; Welch, M. J. Am. Chem. Soc. 1988, 110, 7828–7841.
5. Addition of 5 to a slurry of LAH in THF led to the
formation of the corresponding amine. Aldehyde 6 was
2964, 1736, 1461, 1404, 1178, 1091, 1043, 910, 732 cmꢁ1
;
1H NMR (CDCl3, 200 MHz) d 1.06 (s, 3H), 1.55 (t,
J = 6.3 Hz, 2H), 1.85–2.11 (m, 3H), 2.17–2.37 (m, 1H),
2.52–2.71 (m, 1H), 4.11 (s, 4H) 5.54–5.82 (m, 2H); 13C
NMR (CDCl3, 50 MHz) d 18.2, 21.7, 24.6, 33.6, 38.4, 40.7,
65.8 (2C), 114.3, 125.7, 129.1, 221.7; GC–MS (m/z) 208
(M+), 180, 165, 138, 126, 113, 94, 79, 67, 41; Anal. Calcd