4
Tetrahedron Letters
16. (a) Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz, B. M. J. Am.
Chem. Soc. 2011, 133, 6902. (b) Shockley, S. E.; Holder, J. C.;
Stoltz, B. M. Org. Lett. 2014, 16, 6362.
3. (a) Chang, C. I.; Chien, S. C; Lee, S. M.; Kuo, Y. H. Chem.
Pharm. Bull. 2003, 51, 1420. (b) Chang, C. I.; Chang, J. Y.; Kuo,
C. C.; Pan, W. Y.; Kuo, Y. H. Planta Med. 2005, 71, 72.
17. Kakde, B. N.; Kumari, P.; Bisai, A. J. Org. Chem. 2015, 80,
9889.
4. (a) Kawazoe, K.; Yamamoto, M.; Takaishi, Y.; Honda, G.;
Fujita, T.; Sesik, E.; Yesilada, E. Phytochemistry 1999, 50, 493–
497. (b) Ohtsu, H.; Iwamoto, M.; Ohishi, H.; Matsunaga, S.;
Tanaka, R. Tetrahedron Lett. 1999, 40, 6419.
18. Our approach to the merosesquiterpenoids, see: Kakde, B. N.;
Kumar, N.; Mondal, P. K.; Bisai, A. Org. Lett. 2016, 18, 1752.
5. (a) Katoh, T.; Akagi, T.; Noguchi, C.; Kajimoto, T.; Node, M.;
Tanaka, R.; Nishizawa, M.; Ohtsu, H.; Suzuki, N.; Saito, K. Bioorg.
Med. Chem. 2007, 15, 2736. (b) Minami, T.; Iwamoto, M.; Ohtsu,
H.; Ohishi, H.; Tanaka, R.; Yoshitake, A. Planta Med. 2002, 68,
742. (c) Iwamoto, M.; Ohtsu, H.; Tokuda, H.; Nishino, H.;
Matsunaga, S.; Tanaka, R. Bioorg. Med. Chem. 2001, 9, 1911.
19. We have carried out cyclization of aryldiene 12b (0.3 mmol) in
the presence of 10 mol% Bi(OTf)3 in refluxing dichloromethane (6
mL) to afford carbotricycle (±)-5b in 85% isolated yield (10 h).
20. Energy minimization (MM2) of carbotricyclic ketone (±)-14
was performed using ChemBio 3D Ultra Version 12.0.
6. (a) Lin, W. H.; Fang, J. M.; Cheng, Y. S. Phytochemistry 1996
,
21. 2.1:1 Mixture of (±)-16a and (±)-16b afforded 45% of isolated
allylic oxidation product (±)-17 along with 41% of (±)-16a, when
the reaction was carried out for 8 h in dioxane:H2O (4:1) at 105 ˚C.
However, there were no traces of terminal olefin (±)-16b isolated
from this reaction. This probably indicates that the allylic oxidation
of (±)-16b goes through the isomerization to more substituted
olefin (±)-16a in the presence of insitu generated H2SeO3.
42, 1657. (b) Lin, W. H.; Fang, J. M.; Cheng, Y. S. Phytochemistry
1997, 46, 169. (c) Deng, J.; Zhou, S.; Zhang, W.; Li, J.; Li, R.; Li,
A. J. Am. Chem. Soc. 2014, 136, 8185.
7. (a) Banerjee, M.; Mukhopadhyay, R.; Achari, B.; Banerjee, A.
K. Org. Lett. 2003, 5, 3931. (b) Banerjee, M.; Mukhopadhyay, R.;
Achari, B.; Banerjee, A. K. J. Org. Chem. 2006, 71, 2787.
8. Fillion, E.; Fishlock, D. J. Am. Chem. Soc. 2005, 127, 13144.
9. (a) Planas, L.; Mogi, M.; Takita, H.; Kajimoto, T.; Node, M. J.
Org. Chem. 2006, 71, 2896. (b) Liang, G.; Xu, Y.; Seiple, I. B.;
Trauner, D. J. Am. Chem. Soc. 2006, 128, 11022. (c) Li, S.; Chiu, P.
Tetrahedron Lett. 2008, 49, 1741.
22. Hydrogenation of tetrasubstituted olefinic functionality of
unsaturated aldehyde (±)-18 afforded mixture of spots on thin layer
chromatography (TLC).
,-
10. (a) Tang, S.; Xu, Y.; He, J.; He, Y.; Zheng, J.; Pan, X.; She, X.
Org. Lett. 2008, 10, 1855. (b) Wang, J.; Wang, J.; Li, C.; Meng, Y.;
Wu, J.; Song, C.; Chang, J. J. Org. Chem. 2014, 79, 6354. (c)
Lomberget, T.; Bentz, E.; Bouyssi, D.; Balme, G. Org. Lett. 2003
,
23. Alcohol (±)-20 could be the advanced intermediate for the
synthesis of (±)-taiwaniaquinone A (1i), (±)-taiwaniaquinone F (1j),
and (±)-taiwaniaquinol A (1k) (Figure 1). We envisioned that,
hydrogenation of (±)-17 could efficiently afford (±)-20. However,
in an attempt to hydrogenate tetrasubstituted allylic alcohol (±)-17
using catalytic amount of 10 % Pd-C (W/W) in methanol a room
temperature for 24 h afforded carbotricyclic compound (±)-21 in
5, 2055. (d) Alvarez-Manzaneda, E.; Chahboun, R.; Cabrera, E.;
Alvarez, E.; Alvarez-Manzaneda, R.; Meneses, R.; Es-Samti, H.;
Fern ndez, A. J. Org. Chem. 2009, 74, 3384. (e) Majetich, G.;
Shimkus, J. H. Tetrahedron Lett. 2009, 50, 3311. (f) Deng, J.; Li,
R.; Luo, Y.; Li, J.; Zhou, S.; Li, Y.; Hu, J.; Li, A. Org. Lett. 2013
15, 2022.
,
71% yield, probably via the intermediacy of
16a
-methylstyrene (±)-
11. Kakde, B. N.; De, S.; Dey, D.; Bisai, A. RSC Adv. 2013, 3,
8176.
.
12. McFadden, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2006, 128,
7738.
13. (a) Alvarez-Manzaneda, E.; Chahboun, R.; Cabrera, E.;
Alvarez, E.; Haidöur, A.; Ramos, J. M.; Alvarez-Manzaneda, R.;
Hmamouchi, M.; Es-Samti, H. Chem. Commun. 2009, 592. (b)
Alvarez-Manzaneda, E.; Chahboun, R.; Cabrera, E.; Alvarez, E.;
Haidöur, A.; Ramos, J. M.; Alvarez-Manzaneda, R.; Charrah, Y.;
Es-Samti, H. Org. Biomol. Chem. 2009, 7, 5146.
14. (a) Node, M.; Ozeki, M.; Planas, L.; Nakano, M.; Takita, H.;
Mori, D.; Tamatani, S.; Kajimoto, T. J. Org. Chem. 2010, 75, 190.
(b) Ozeki, M.; Satake, M.; Toizume, T.; Fukutome, S.; Arimitsu,
K.; Hosoi, S.; Kajimoto, T.; Iwasaki, H.; Kojima, N.; Node, M.;
Yamashita, M. Tetrahedron 2013, 69, 3841. (c) Jana, C. K.;
Scopelliti, R.; Gademann, K. Chem. Eur. J. 2010, 16, 7692. (b)
Thommen, C.; Jana, C. K.; Neuburger, M.; Gademann, K. Org.
Lett. 2013, 15, 1390. (d) Alvarez-Manzaneda, E.; Chahboun, R.;
Alvarez, E.; Tapia, R.; Alvarez-Manzaneda, R. Chem. Commun.
2010, 46, 9244. (e) Tapia, R.; Guardia, J. J.; Alvarez, E.; Haidöur,
A.; Ramos, J. A.; Alvarez-Manzaneda, R.; Chahboun, R.; Alvarez-
Manzaneda, E. J. Org. Chem. 2012, 77, 573.
24. A one-pot direct conversion of (±)-18 to (±)-taiwaniaquinol D
1e) using excess amount of BBr3 solutuon (12.66 equiv), as per
Ozeki's procedure, yielded (±)-1e in only 27% yield along with
(
mixture of compounds.
25. (±)-taiwaniaquinol D ()-1e: To a stirred solution of
compound (±)-19 (60 mg, 0.175 mmol; 1.0 equiv) in acetonitrile
and water (7 mL) was added saturated aqueous solution of Na2S2O4
(2 mL) kept on stirring for 20 min. Upon completion of the reaction
(monitoring by TLC), it was diluted by water (10 mL) and extracted
with EtOAc (25 mL) by using a separatory funnel. The organic
filtrate was dried over anhydrous Na2SO4 and concentrated in a
rotary evaporator under vacuum. The crude was purified by flash
chromatography (4:1 hexanes/EtOAc) to give 53 mg (88% yield) of
15. Liao, X.; Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2011
133, 2088.
,
(
)-taiwaniaquinol
D (1e) as red color oil. Rf = 0.4 (5%
EtOAc/hexanes); 1H NMR (500 MHz, CDCl3) δ 10.42 (s, 1H),